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PART 1- CHARACTERIZING SPACE/TIME RANDOM PROCESSES

1. INTRODUCTION

The analysis of arrays of transdtucers, or antennas, has had such an extensive develop-

ment bý now that one anticipates little shich is novel Yet, in spite of the widespread use 63

of statistical methods in communication systems, it is comparitively recent that array, or

antenra, processing methods, based on the statistical properties of both the signal and the

int,'r, tug noise, were introduced However, sufficient time has elapsed such that a rather

fornidable literature is available

Unfortunately, most contributions to this literature are quite mathematically oriented-

tuually couthed in a maze of covariance matrix manipulations While a cerftin amount of this

may be necessary to formally establish the logic of the approach, the underlying principles

of operation are quite intuitive and can be theoretically explained in terms of an appropriate

combination of classical antenna theory and some fairly straightforward spatial random pro-

cessing Development of this intuitive understanding is particularly important since the pro-

cessing gain, or signal-to-noise ratio, often carries a high premium for normal array processing

applications Often, direct implementation of "optimum" processing methods is not possible

either from computational or physical considerations Consequently, the typical concern is

with suboptimum methods which exploit the easential features of the "optimum" processing

to obtain all but "epsilon" of the ultimate performance In addition to understanding how

spatial processors obtain their optimum ptrformance, it is importnt to determine just what

this performance is since it sets the standard, or benchmark, against which to compare the

performance of any suboptimal, but implementable,.: stem.

The use of an array of transducers, or an antenna, is typically motivated by two

reasons, both of which are generally coupled together. First, the particular spatial coherency

of a propagating signal is exploited to improve the signal level versus the background noise

The dominant features governing the degree of improvement are the array geometry and the

spatial structure of the background noise. Sometimes, the signal can be improved with simple

statistical smoothing, while at other times the coherence of the background can be used to

combat background noise. In the second application, the directional characteristics of the

-5," I



ambinbnt field of signals must be determ~ned Again, the degree to which a source position can

be located is influenced by the same factors which determine its detectability

This report is divided into three, parts Part I considers the problem of characterieing

space/time random processes The study of this problem is fundamental to the analysis of

the operation of arrays, or antennas, with random inputs

In Part 2 we describe the response of airays to various noise fields We consider thie

optimization and resulting optinoun performancue of pro0eSslllg nletiiods for signals and noise

"fields of interest

Part 3 considers a sequence of topics based upon the results developed in Parts I and

2 These focus on the intuitive concepts of the processing methods in the context of some

selected examples of noise fields and array geometries and on tile introduction of some

selectee suboptimum processing methods

Two comments are appropriate here First, we assume tnat the reader has a background

in temporal random processes and a knowledge of Fourier methods Appropriate referei'ces

are given by Papoulis [11]. Davenport and Root [2], and Van Tree, 131 Second, we formulate

our arrays in terms of a continuum, or an aperture, and a representation of spatial signals

observed across an aperture This leads to a notation which is somewhat more abstract than

that which corresponds to discrete element arrays tlowever, it does lead to a more funda-

mental consideration of the issues ii spatial processing and to results which are much more

intuitive and uncluttered by the spatial sampling ýssue introduced by a discrete formulation

Once these results are established with a continuous formulation, we consider the issues needed

to relate them to discrete arrays In essence, wc are asserting that for many situations a .ontm-

uous analysis is more fundamental and easier. although we recognize that uhltmately most

arrays of interest here are discrete and our results must be related to them

2. SPACE/TIME RANDOM PROCESSES

In the theory of temporal processes there are several ways to characterize or describe

the random processes of interest Ultimately, one would want to have a complete specifica-

tion of the processes in terms of their probability distribution funsctions for an arbitrary I'

number of points in the space/time field With the prominent exception of Gaussian and

Poisson processes, this information is generally not available and one must settle for a less

complete or partial characterization Most analyses involve a second moment characterization

4.. 29,1--. ,
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in which one specifies the mean and covariance function for the processes of interest As is

well known, this information is alEo sufficient to provide a complete characterization for

Gaussian processes since its probability distribution of arbitrary order can be related to these

two momnents We pursue an approach that uses the second moment characterization which

suffi•es for most of our apphlcations Further, we assume that the processes are also Gaussian

when we ask probability questions, e g , the performance o0 opttnal detectors

A second method of analysis involves a description of how the random processes are

generated While this has found extensive use for purely temporal processes, i, ,elucnued by

the wealth of mnaterial in the literature regrding state variable estimation procdnres, it has

not, as yet, found extensive use for space/time processes The role of these proLCesses and their

relation to districuted systems is clearly an emerging field of interest, however, the analysis of

the partial differential equations introduced to date is quite complicated and is not yet

particularly fruitful

2.1 SPACE/TIME COVARIANCES AND FREQUENCY WAVE NUMBER FUNCTIONS

Let us assume that we are concerned with a signal y(t z) that is defined over both time

and space I We model y(t D) as a random process defined over a field with a temporal domain

or index set t e ITo, TfI and a spatial domain or index set ze RN with a mean

my(t z) = E[y(t.z)] (2 1)

an0 a space/time covariance

Ky(t,T.z.0)= E[(y(t z)-my (t'z)) (y(W )-my(r:'))*] (2 2)2

(we often assume zero mean processes for simplicity)

In this most general case the processes are both temporally non-otationary and spatially

non-stationary, or non-homogeneous Analyzing prot-tems that involve this chss of i ovarlancv;

functions using a secoid moment characterization ii,rodtices many issues that arise with

Ie use scalar processes and instroduce iector on-s only when necessary2
tConsplex Conjugate We use a complex formunlaIto'i ihroughoi Th7is is more appropriate for a sonar anahi'si than it
is for seismic data, howeier, the correspondence for stsr tld real prt'cesses is direct See Rel 3 fin as otipletc dei elopment

eocomplex process representation

3
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problems involving temporally non-stationary processes In general, the analyses complicate

the mathematical detail, but the conceptual issues are unchanged

In many practical situations the processes encountered are temporally stationary, at

least in a wide sense, such that we have

my(t.-) = my(Z) (23)

and

Ky(t,1.z) = Ky(t-2 ?S' (24)

This assumption may not be strictly satisfied over long intervals of time However, when the

processing interval is short compared to the time period over which the covarance changes, it

is a realistic practical assumsption

We also frequently encounter situations in which the space/time processes are homo-

" geneous or spatially stationary The cow -. iaiice is only a function of the vector difference of

the spatial arguments

my(t:z = my(t) (25)

and

Ky(t.Tr z) = Ky(t- z) (2 6)

Again, this may not be strictly satisfied over large distances, although it is a realistic approxima-

tion when the receiving aperture is small compared to the distances over which the covariance

is non-homogeneous. We point out, however, that several probiems which involve signals in tlse

near field and array shading effects need to be discussed in the context ot a non-homogeneous

covariance, so the general model is certainly not void of practical interest.

Finally, we have the situation in which a stationary, homogeneous process exists Com-

bining the two above assumptions we have

In my(t.z_)= y (2 7)
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and

Ky(t,r.z,') = Ky(t- z-) (2 8)

We dnect our attention principally to problems involving processes which fit within this

general class of assumption. We also drop the mean from further consideration

In many of our analyses it is useful to consider a spectral decomposi'lon of the random

processes of interest. By pursuing an analysis in a frequency domain, either temporal or

spatial, we can often obtain a significant amount of insight into the operations of our pro-
cessors. To do this we define a series of Fourier transform operations The temporal frequency

spatial correlation function associated with a stationary process is given by

St 4.

Sy(w:zK) = K(T(r z,_•)ejr dr (2 9)

When z = ', this yields the temporal spectrum at a point in space. If we consider sampling

at a number of points in space, so as to forn, a vector process, we can order the points

and create a matrix format the spectral cosariance of the vector process by sampling

S Sy(w:z,), appropriately.

Similarly, for a homogeneous process, we can define the temporal correlation, spatial

wave number function as I,

F- Fy(ti k) jj fdA Ky(t1r:z)e'Z_ (2 10)

"Note that the integration is performed over the entire spatial domain of the process

Consequently, there is a fundamental diffeience among the transforms over one, two, or

three dimensions We do not use this function very frequently because there are better

alternate representations for the signal in the temporal frequency domain

'C



For a stationary homogeneous process, the frequency wave number function is

defined as

'I

Py(k) = dr dz .Ky(r'z)e-J(r'z) (2 11)

(Note the sign difference with respect to the spatial variable)

This function has a very appeahng interpretation When we pursue an analysis similar to

that used for the spectral representation theorem for temporal processes, we find that the

process y(t.z) can be represented in a Stieltjes integral form [41 as

y(t:. E eJ(wt-kz-)dY(w,.k), (2.12)

where k has dimension N, the dimension of the space over which the process is defined. For

the decomposition of Y(w D) we have the following properties-

E -2IY( o 2 k)-Y(w•o'k)I 21 = -2 dk

_ k Py (2 13a)

or formally E[IdY(w k)12 1= dc --- YW~) (2 13b)
_ ,272 (2 ,)N

E[Yo2:k2 - Y(" l'k))(Y(co4 "- 4 ) - Y( 3 -.k 3 ))*I = 0, (2 14a)

when ((w],- 2 ) x (kI,k 2 )) nl ((w 3 ,- 4 ) x (k3 ,k4 )) = 0, (2.14b)

i.e , disjoint frequency wave number bands are uncorrelated Consequently, we may consider

this class of space/time random processes to be composed of a superposition of plane waves of

radian frequency w and wave number k This is the spatial generalization of a spectral decom-

position of a random process
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If, in addition, we impose the condition that the process y(t z) satisfies the homogeneous

wave equation, then we have the constraint

-=IkLI, (2.15a) •-c '~.'.Z'
c

21rf
or - = fX = c (velocity of propagation) (2 15b)

Ikl Mol

This defines a structure which signals propagating in a medium must satisfy Further this

implies that at aihy particular w the frequency wave number function is nonzero only on a

sphere of radius 2?r/X = Iki = w/c This constraint is not necessary for y(t ,) to correspond

to a propagating process For example, one may have propagation in three dimensions and yet

consider a representation over a two-dimensional surface since the two-dimensional wave

number value corresponds unambiguously to a three-dimensional surface except for its sign

The inherent advantage of this representation for homcgeneous fields is that it allows us

to make many statements regard,ng the processing of our signals which are completely dual to

analogous frequency domain operations when processing temporal waveforms Naturally, there I
is a close relationship among the various transforms discussed, which are summarized in Fibure

2 1 The paper anJ text b, Yaglom [5,61 are particularly appropriate references for

the harmonic analysis of space/time processes. With these references the rigor in using

the harmonic analysis can be pursued at length. For our purposes the major problem

relates to the notation of representing y(t z) in either temporal or spatial frequency domains

This can be quite awkward if pursued too far We shall use the Stieltjes notation dY(w k) when

we wish to do this with the important properties of Y(w k) summarized in Eqs 2 13 and

2 14 above.

Often, it is convenient to use different friquency measures The temporal frequency, f, in

cycles per sec, or Hertz, is given by

f = w/27r (216)

Similarly, the spatial wave vector v, in cycles per unit distance, is given by

v=k_2sr (2 17) kip

.7
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Figure 2-1 Relationship among the various second moment representations for stationary -
homogeneous space time random processes

For plane waves

Ik/2*l = I El = f/e = I/N (2.18)

It is also convenient to define the etfectiv, wavelength along each axis in lerms of the com-

ponents of v. In Cartesian coordinates we have

Px = l/A'x (2 19a)

*y = v l/Xy (2.19b)

Uz = l/X'z (2 19c)

(Note that one does not obtain these effective wavelengths by simply projecting the total wale-

length oriented along the propagation direction upon the respective axes)

To illustrate these concepts and to develop some results that we need later, we present

some examples First, we shall consider the analysis of some of the various models popularly

used in the literature. Next we consider a general discussion of representing space/time processes



Here v.1. also dra, upon some results from electroniagvetics wluiih apparently have not found

their way into the sonar/seismic literature

Generally, i, is easiest to discuss these space/tine processes in terms of either the

temporal frequency spatial coirelation or the frequency wave number function. Consequently,

many results are specified at a single tempor.l frequency, or for a narrow frenuency band For

a broadband analysis, the integration over a specified frequency range -s implied.

Example I Directional Signal

The simplest signal c f inteiest is a plane wave propagating in a direction with speed c

The space/time process has the forri

y(t.z) = Yo0 t-(a'2/c)l (2 20)

'•- as illustrated in Figure 2 2

Isa Propa .ation
ODrection a

Wave frents Magntude Iasl = "k a • =constant

y(t.j = constant

k\

hay

zX

Figure 2-2 Model of plane wave propagation
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If we assume that yo(t) is a stationary random process, then the space time correlation

finction is given by (assuming zero means)

Ky(Ar AD) = E[y(t z) y*(t-Ar z-Az)] = E[yo(t-(a-z/c)) yo*(t-Ar-(_(z-Az)/c))l

= Kyo(AT-(a'AzJc)) (2.21) I
I

The temporal frequency spatial correlation function follows the Fourier transform relation .

of Eq 2 9. We find

Sy(W.Az) = Sy° (w)e7J(/c)(A'AZ) (2 22)

Consequently, we have cross-spectrum of a plane curve at two different locations which is

related to the spectrum of the process at a single point by a simple linear phase shift that

reflects the propagation phase between the two points. Therefore, the elements of spectral

matrices that involve pure plane waves consist of a common amplitude and a set of phase shifts

between the various sensors

If we now transform this function with respect to the spatial variable, we obtain the fre-

quency wave number function

"Py(W = 4-Sa (f- y aW:z) okZ = S ayO()UO °k) (223)

RN

where u° -- = uo°k. - a uo(ky - - a uo(kz - a (224)

- ...•. is a three-dimensional impulse function (or two-dimensional for a planar analysis), which in

Cartesian coordinates can be written as a product of impulse functions of a single variable. (In

discussing spatial impulse functions, one needs to be very careful in defining them, especially

with regard to the particular coordinate system used The common limiting sequences often

yield paradoxical results, and an operational definition that uses generalized functions is

appropriate [71.)

10
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We find that a plane wave propagating with speed c and direction a has an impulsive frequency

wave number spectrum located at

410
ka (225)

$2(1

in wave number space. (Unless the wave is monochromatic, i e , at a single temporal frequency,

the magnitude of the wave number vector changes as a function of the temporat frequency ) We

again point out that the space over which this transform is taken must be specified Theoret-

ically, in a homogeneous, isotropic medium the magnitude of the wave number k at a

particular frequency should be a constant, indicating that for three dimensions the function

Py(w k) is nonzero only on a sphere, nonzero en a circle in two dimensions, or nonzero at two

points opposite in sign in one dimension

However, in many cases one considers representing the waves in a three-dmensional space

as projected on a two-dimensional geometry. 'this leads to an analysis in which the magnitude

of the wave number is not a constant at a particular temporal frequency. It should be obvious

that any set of statistically independent directional signals propagating as plane waves can be

represented with an impulsive frequency wave number function. However, such a representation

is not possible if the components are correlated as could possibly be envisioned in some coherent

multipath situations The fundamental difficulty stems from the requirement that components

from disjoint regions of wave number space must be uncorrelated as specified by Eq. 2 14,

therefore such a process would not be homogeneous.

I Another commonly used model is isotropic noise. This noise process is commonly

advocated for ambient sea noise. It can be viewed as the superposition of plane waves propagating

from all directions with a uniform statistical level. This has a spectral covariance structure of

the form

Sy(W z- 'So(w) sinck Iz-_) (2 2 6 )1

Since this particular process fits within a more general context of a plane wave process, we

discuss this more general representation

Slm~r .sin(xio

Isinciv) 

= -



2.2 REPRESENTATIONS FOR PROPAGATING SIGNAL PROCESSES

2.2.1 Processes in Three Dimensions

2.2.1.1 Plane Wave. A commonly employed model for the ambient noise background is

isotropic or omnidirectional noise We first describe this process and many others in terms o(

a model for generating its temporal frequency spatial correlation function, after which we

find the associated frequency wave number function Later, we specify the frequency wave

number function directly. We will find that this is an easier and much more intuitive approach

At a temporal frequency w, isotropic noise in three dimensions is modeled as a super-

position of infinitesimal plane wavw processes, all radiating towards a common point [81 These

waves may be considered to be geneiated on the surface of a sphere whose radius is large com-

pared to any geometries or wavelengths of interest Using the integrated transform representa-

tion we have

d f0 sin(0) d0 dY(wo 0 ,)e Jko-r(')z (2 27a)J-""00

where

y(tz) = F dY(w z)eJ"tt (2.27b)

and ko1 21r/X with ar(
0

,0) as a unit vector in the radial direction. Consequently, -koar(0.-)

forms a propagation vector k(0,0) at a temporal frequency wo radiating towards the center

of the sphere, or

k.(0,) = -koar(O,) - ar(0) = a fr(
0

0) (22,

+1



dY(WEOd(1e 1 ,(0,11

k..

Figure 2-3. Incremental surface area contributing to a plane wave spatial process.

We assume that disjoint regions of the sphere radiate uncorrelated components so that

E[dY(wo 0 1 ,ý)dY*(-0 o,2)= S0(w0 . 101 ) ' tU (0s-2)u(O -0) Id.\w

(2 29)1%r

(The impulse terms should be interpreted formally and should operate simultaneo'4isly. The

factor of (4w/sin 01) needs to be introduced because of the use of spherical coordinates ) The

temporal frequency spatial correlation function is given with some abuse of notation by

Sy(Wo:_z) = E(dY(wo:ZdY*(wo z-Az)I (2.30)

13



When we use Eq 2 27a, we have

Sy(wo Az)

d -•f d 02 4- E[dY(w°.0jl 1
)dY*(-! 02,02)1

""O 0

ejkoar(01, , )'+ jkoar(0 2,12)'(z-Az)
*e r(231)

Equation 2 29 implies that disjoint (0,0) is uncorrelated and yields the desired result

SOiA(.0,s(232)

The frequency wave number function follows from the Fourier transform relationship It is

useful to define the wave-number k in both spherical and Cartesian coordinates

k=kxax + kyay + kzg = krar (Ok,0k) (233)

where ar (6k00k is a unit radial vector in the same direction as k We have

Py(ok= fff dAzAAf dO 4sin') d So r( o',) '
4 -

0 0

( d J( krr(Ok,k).koar(O,0))) .A z

dO dI dJ So(o:0,) dAz -

(234)

.5.
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Tile evaluation of the last integral leads to an impulse, or delta funcion, in wavc number spate.

i.e,

fJ(krar(Ok'0k)-koar(O'0))'Az '3 uo(kr-ko)u°(Ok'O)uo(@k-0)
d ze -(-2=tr) (2 35)

k2sin (0)

When we substitute Eq 2 35 into Eq. 2 34, we obtain

Uo(kr-ko)
Py(Oo D = (2ff) 3 So(coo:Ok,0k) (236)

47r k 2
o

We have the intuitive interpretation that the resulting frequency wave number function has the

same distnbution as the spectra of the plane waves at the various locations on the sphere. The

delta function anses because these waves are modeled as pure plane waves analogous to pure tones

temporally. By starting with this specification of the noise field we can model a large number of

ambient fields that may be encountered.

2.2.1.2 Series Expansions in Terms of Spherical Harmonics for Space/Time Covariances for

Plane Wave Processes. At this point we observe that once So(w•o0,0) is specified, Py(t~o_)

follows directly. One can describe the distribution of plane wave power in the signal field quite

intuitively in terms of either function. We now demonstrate a series representation for

So(wo 0,0), which enables us to find the temporal frequency spatial correlation function

Sy(GYAz 5 quite conveniently Since many of the signal processing techniques involve this func-

tion, these results, coupled with a previous analysis of purely directional signals, form a

reasonably complete method of analyzing ambient signal fields with a propagating strilcture.

The basic techniques that we employ draw upon some results in spherical expansions which

were first used in analyzing similar problems in electromagnetics Our principle reference is

Stratton[9].

1
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The expression for the temporal spectrum-spatial covariance function when represented

in zpherical coordinates is

S:: y dO - do So(- o 0,0)

e e-Jkorz[cos(O)coS(Oz)+sin(O)sin(Oz) (sin(Oin(o;)'-cos(O)cos(6z)). (2.37a)

where

rzA'zI (2 37b)

Using results for spherical expansions, we can expand So(w o .0,O) in a series of the form [9, Eqs

(399)-(420)].

So( .0,) = Snm(oo) ll(cos)em (2.38a)

n-- m=n

where the coefficient Snm(wOo) is given by

::•2n+l (n-Imi)! 7r"d .2?rs• oSoW00 Iml (CS)jmO 23b
""•'f' nm(s°) 4v (n+i m"- JdO]o sinOdi So.O,¢) p1 n (cosO)e" (2 38b)

and the function P ml (cosB) is a Legendre function of the argument cos 0 These functions have

"been tabulated extensively, alternatively one can generate them with the Rodriguez's formula I 10]

n (x)=(x 2
-l)m/ 2  

(x 
2 
I)m/2 dm+n(x 2

.l)n
- (2 39)dxm 2nn! dxm+n
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Substituting the expansion of Eq 2 38a into the expression for Sy(w 0 Z) we have, after

exchanging the integration and summations.

• 0o m=nNj
SYnW Snm(wo) *

n=0 m=-n

O dO "!sm(O) pIml (c 0 sO)eJkorzcos(O)cos(Oz)

A.-- f-- dO j(m4'kPrzsin(O)sln(Oz)cos(4'0z))

k211 d im-o2inrsnO)csOo) (2 40)

We now perform the integrtion with respect to €. We change integration variables first We define

2(2.41)

Substituting this change of variables yieds

I d eJ(m'korzsin(O) sin(Oz)cos (•-Oz))

2sr~

1 2 1o d' eJm(4 1 "r/
2 

.Jime ''-krz sin(O) sma(z) sin(O')]

2 7rJ

= (j)melm0z Jm[korzsm(O)sm(Oz)I (2 42)

where we have used the tabulated integral[ 101

17



" (X) cos(x sm(o)-mO)dO fir cos(x si(O-)O.

0 *7

=[ cos(x sin(o)-mo)d = f deJ[ni-x sin(o)] (243)

"J0 I-

We substitute this result into Eq 2 40, the expression for Sy(woZ), and obtain

n
S y (-OoD = E Snm(Wo) (-))memoz

n~o m=-n

dO sin(0) Plml(cosO) Jm(korz) sin(O) sm(8,)e orzcos(o) cos(Oz)

(2.44)

To evaluate this integral we use the following addition formulae for spherical harmonics from

Stratton [9, p 411 (Eq 2 69a) I

in(koR)Pm (cosa) = (J)nfr Pm(cosO) Jm[kR sin(oc) sin(O)leIkRcos(a)cos(O),

0
(245)

where jn(X) is a spherical Bessel function, which has also been tabulated extensively. We have

Rayleigh's formnula[ IlIl

jn(x) = xn I I) simc(x) (246)

Making the identification of the respective variables and changing the sign of ko, we have

18



7r dO -jkorzccs(0) cos(0)J sin(O) P (coso) Jn[kor sin(O) sm(0)] e r s z
0 2 n

_,)n mIml
=IJ)

0
Jn(korz)P (coSO~) (247)

In summary, we finally obtain

Sm=n
S~(w0 ) = mnImi m

S Y(-°-Z ) Snm(c°) (-J)n+m Jn(korz) P [cos(Oz)]eJmOz , (248)

n=O m=-n

where we have from Eqs 2 28a and 2 28b

m=n
Sm- 0,)Pml (cosO)eJmO (2 49a)

So(.. 0 n)= nm(W°) lnn=O mi-n n'

and "

2n+l (n-m)! 0
Snm((w) = n dO dO sin 0 So(W 0,0) pI (cosO)eJmO

(2.49b)

.5-

Iml
The expressions for finding the Legendre functions P (cosO) and the spherical Bessel functionsn

Jn( I kol I ZI ) are given by, respectively, Eqs. 2.29 and 2 46 We point out that both of these

expressions have been tabulated We have confined our attention to plane wave processes

that originated on a sphere in wave number space, i e , Itl = 21r/kX Using the references cited, it

is straightforward to develop an appropriate theory when we relax this restriction.
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Example 2a -Isotropic Noise

The simplest noise field in terms of this representation arises when

SSo(wO), n=m=O

SnmW¢) =(2.50)
Snm()=

0, otherwise

We have from Eq. 2.49

So(cj:0,0) =So(w), 0 < 0< •r, 0<0b< 21r (251)

This is a commonly used riodel for the ambient noise present in the ocean The temporal fre-

quency spatial correlation function follows directly from Eqs. 2.46 and 2 48

Sy(wo ) = So(wo) jo (korz) P0 
[cos(Oz)J = S,(w) sinc(kor.) (2.52)

This result has been derived in many places, but in a much less general context [8,121

Example 2b - Surface (or Bottom Noise)

With this noise field we assume that there is a much stronger intensity for the ,ioise field

in the vicinity of 0 = 0 and that there is an azimutal symmetry To do these we choose

So(W .0,0) = So(o) [ + icos(0)] (2.53)

such that the noise level as a function of 0 appears as in Figures 2-4 and 2-5. This type of noise

can be used to describe a high intensity noise field which is present from the surface (or

bottom). We have

0O, mOO, orn->2

Snm(Co) = So() , n= m= (254)
S•,a, n-- 1,• m=0

20
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"Consequently, the temporal frequency spatial correlation function becomes

(0) (0)
S y(.):D = So(-) Jo(korz) P [cos(Oz)] :ajI (kor5 ) PI[cos(05)J

!6

S0 (w0 ) sinc(kor ) +jet -[sinc(korz)-cos(koiz)] cos(Oz) (2.55)

Example 2c - Layer Noise

With this model of a noise field we assume that there is a much stronger intensity in the

vicinity of 0 = 900, and that there is azimuthal symmetry Specifically, we choose

1 3
So(c0.0,0) = So(w) [ l-(.P 2(cosO)l =So(w) [S 1 - --ecos(20)I (2.56)

4~ 44

The intensity as a function of 0 is illustrated in Figures 2-6 and 2-7. We have

0, mo#0

I , n= m =0

Smn(wo) S(wo) 0, n = 1, m = 0 (2.57)

S-c. n =2, m=0

0 n>-3, m =0

The temporal freque'scy spatial correlation function becomes

(0) (0)
sY(-02) O (I) i0 (kor,) P0 tcos(0..) + ci 2(kor,)P 2 fco5(0,J S

33cos(korz) [Lcos(2 I

( rP

"=So(Wo) sinc(korz)+ •' , ) sinc(korz) J,
riKo [I(k r )2 /(kor,) 2  4-)+

(2.58)
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It should be clear that we can now model a large class of processes with this method More

complex elevation, or 0, dependence can be introduced and sectors of noise in azimuth, or 0,

can also be incorporated

The model is particularly convenient when there are relatively few significant spherical

harmonics. Fortunately, this is a common situation for a typical ambient noise field in many

sonar applications.

It is worthwhile to point out that the analysis in terms of spherical harmonics demonstrates

that many ambient field models can lead to the similar oscillatory behavior for the temporal

frequency spatial covariance function This stems from the ideal bandlimited behavior that the

finite velocity of propagation imposes upon the wave number spectrum The oscillatory behavior

certainly cannot be interpreted as being particularly unique to an isotropic noise model

2.2.2 Representations for Signal Processes in Two Dimensions

In the discussion of section 2 2 we considered the representation of signals propagating in

three dimensions whose wave number was limited in magnitude to 27r/?,. In this section we

analyze the related problem of the representation of signals on a surface. In many problems, this

representation may be more convenient than the one in the previous section Problems in this

context may arise in several applications. In many, the medium of interest supports surface

waves; for example, seismic Rayleigh and Love waves or internal ocean waves. In other applica-

tions, one observes signals which propagate in three dimensions but are observed on a two-

dimensional surface

If we confine our attention to plane waves, there is little ambiguity since only two points

on the sphere model map to an identical point in the plane. If we assume that this ambiguity

can be resolved, possibly via the characteristics of the receivers, the geometry of the model, or

its inrelevancy, one can proceed with a two-dimensional analysis which is often considerably

simpler than the corresponding three-dimensional one [ 12, 13, 1 4 ]1. We point out here that in

contrast to the previous section, we will not constrain the magnitude of the wave number, although

in most applications it will have a finite upper limit

'This model isparttrilady relet ant to plote$tung seisnic data for here the signals are all incident from heneathi the earth's
.iSrface. at partially discunted by Berg, Gaarder. or Capon
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The fundamental relations between the temporal frequency-spatial correlation function

and the wave number spectrum remain virtually identical with the exception of the integration

region which becomes a plane rather than spherical surface. We have for the frequency wave

number function

Py(Cw k)f =JJ Sy(wO')e-kz dz (Cartesian coordinates) (2 59a)

27o SY(wzeJ(krrz) C°S(k) cos(Otz) + sin(0k sl(0z) rzdrzdoz

1O 0  (Polar coordinates) (2.59b)

Similarly, for the inverse transform we have

vdk

Sy(Cz_) P k dk_ (Cartesian coordinates) (2 60a)21 _ (2f)
2

p0 pf-f2
22J lo-j(krrz) [cos(Ok) cos(Oz) + sin(0k) sin(Oz) I

PY,(W:De - krdkrdr~k I.
G2r)yfJ

(Polar coordinates) (2.60b)

We can proceed with an analysis parallel to that which we did for the spherical representation.

First, we demonstrate that the analysis of a directional signal remains unchanged, and then we

discuss a series representation which leads to a convenient method of analysis.

Example 3 - Directional Signals

One ot the principal differences which often arises in a two-dimensional analysis is that

the propagation velocity as projected upon the surface need not be a constant unless one con-

fines his attention to surface waves. For a directional signal we have

y(t.z) = yI It- (L'z/c(ks)1 (2.61)
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L

which describes the signal propagation where c(ks) is the propagation velocity as a function of

the signal wave number, ks. This leads to a temporal frequency spatial correlation function of

the form

= -jlco/c(ks)] r'z -jks'Z
Sy(W'_ = So(cO)e - -- So(CO)e - -, (2 62)

where we have the relation

ks C,• (2 63)

The frequency wave number function is still impulsive, or

Py(w k) = So(o)uo(k_-ks) = So(co)uo(kx-ksx)Uo(ky-ks ) (2.64)

To consider an analyiis of some more general processes using a series representation, we specify

P y((w.) in terms of the polar coordinates kr and Ok We expand the frequency wave number

function Py(co (k) in the series-integral form

Py(W k) = pm(:kre - (265)

where

Pm( kr) 2v F y (wc k)e-m-dk,, kr = Ik[ const (266)

This is simply a Fourier series decompo'sition at a specific kr

. . ... .
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To proceed further, we have the following sequence of Fourier-Bessel or Hankel transforms

For any function f(p), p > 0 with a bounded first moment, the nth order (n > - 1/2) Hankel trans-

form is given by

FQC • f00
Fn(X) f(p)Jn(pX)pdp, (2.67a)

while the inverse transform relationship is

f(p) Fn(2t)Jn(pX)XdX (2.67b)

(We note that one can generally use Hankel functions rather than Bessel functions, and, in

particular, when n = 1/2 one has the common Fourier transform pair [15, Vol 2, p 73])

We define the mth order Founer-Bessel transform pair for pm(co kr) to be fm(w:X) such

that we have

fm(w:X) = PmitW kr)Jm(Xkr)krdkr (2.68a)

and

Pm(wkr f(mo ?S)Jm(Xkr)XdXs (2 68b)

(One could choose any order for the Bessel function or transform order, however, it will be

convenient to choose it to be m as indicated.) The net result of our decomposition is that we

can express Py((w:k) in the series integral form

Py~w~k • fIm(w:? )Jm(Xkr)7dX eJm6k (2.69)

29
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This is simply a Fourier-Bessel representation for a cylindrical coordinate system, and it has

been used extensively in the study of electromagnetic fields[91

The temporal frequency spatial correlation function follows, using this representation We

have in polar coordinates from Eq 2 60b

Sy(¢o dk kr y(COk~ej(krrz)cos(Ok-Oz)
Sy ) dkr d~k kr P (W h)Z (2.70)y (27r)2f I

Substituting Eq 2.65 yields

I 2-- -treOk.-krrz cos(Ok-.z)]
Sy(W.Z) = " rk dokkr Pm(w _d

(20) 0 0

dkrkr Pm(w.krJe -J Im(krrz) (2 7)

= fm((O:rz)ejm•z'2

m=--

In summary, we have the relationships

Py(oJ:k) = pm(w:kr)ejm~k (2.72a)

and

S Y(¢- Z)-- = fm(w'z)eJm(7--/2)" (2.72b)
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where

pm(w kr)h-*..fnm(c) rz) (2 72c)

form an mth order, Founer-Bessel, or Hankel transform pair

One can use the numerous transform pair relations that have been tabulated by Erdelyi

The essential point here is that a large amount of literature and tabulated integrals are

available for these transforms [101
For convenience, we point out a possible, but certainly not exclusive, approach to the

analysis of this class of fields Let us assume that the magnitude of the wave number is bounded

such that kr < ko. Just as we did earlier, we can expand either pm(w kr) or krpm(c( kr) in an

orthogonal series of polynominals in the variable kr/ko In the following, we consider a

Tchebychev expansion of krpm((w kr). We have[ 101

SCnm k( o), 27a

krPm(w kr) n Tn (L,0•k, <krk (273a)

n=0 (1-(kr/ko)2 )!2

where Tr(x) is an nth order Tchebychev polyneimal, and

ko
0 krp~~r ()(dk)

Cnm 0 krPm(= :kr Tn , n*O (2 73b)

0 dk
Co - J krrPm(w kr) n=0 (2 73c)

S 0

We now have the tabulated integral 15, Vol 2, p 42(l)]

If Tn(P)

J0 (1p2)1/2 = j(m+2)/2(JJ(m-2)/2l-) (2 74)
0 ( J((hp)dp
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Substituting into the transform integral and using Eq 2 74, we obtain

7rko kr koz

J ko (2.75) ,f J:z) .2 C'mii Nm+n/2() Nm-n)/2 (2r.) ( 5n=0

such that

"1 ko korzkorz jm(1,r/2)
y(- n=-" __ nm J(m+n)/2 J(m-n)/2 e 2 )

(2 76)

Since the Tchebychev polynommals are orthogonal over (-I,1) we can obtain some degree of

freedom since we are interested only in the region (0,1) Consequently, by choosing pm(W kr)

appropriately for kr < 0 we can minimize the number of terms needed in a finite term

approximation

Alternatively, one could approach the transform using Eq 2 74 by expai ding pn(W kr)
and using the following recurrence relationship in the transform of Eq 2.72a.

Tn+ (X) + Tn( 1(x)
xTn(X)= 2 (2.77)

Again, the important point is not so much this particular method of expansion, but that there is

a wealth of results available using tabulated special functions which can be tailored for an

individual application

Example 4 - Circle Noise

A particular noise model often used follows when we choose

So(w)uo(kr-ko)
Py(G.) k)= (27r)

2  (2.78)27rko
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i.e., this is a ring of plane waves radiating towards the center. We have

0, m*O

pm(cj:kr) 
1  (2.79)

So(W)Uo(krko)
2r ko , =

When we use the zero order Bessel transform, as indicated by Eq 2 68a, we have

0 m0

fm(w -g) = (280)

So(w)Jo(korz), m=O

so that the temporal frequency spatial correlation function becomes

Sy(w'.) = So(-)Jo(korz) (281)

Example 5a - Two-dimensional representation for isotropic noise

Let us assume a frequency wave number function of the form

Py(W .-") = I [k) / (282)

Due to the angular symmetry, the function pm(w.kr) is nonzero only for m=0 We have

Spm(c:kr) (2.83)

m -1/2

02fko2  k0  7

4 ~33 N



This Py (W h) is shown in Figure 2-8 Using the Tdiebydiev expdnsIOn, as shown in Eq 2 73a.
we find

0, 
m1f*0

krPm(w kr) 
(284)1kP

o, 21 -ork [ j i, m=0 T=

Substituting into Eq 2 73b we find

0, ,i"o

Cnm = 0, M=O, n(l 
(2,85)

2 7-' o ,+ m =O , n =1

12

10

9

3 .-

k ' /k o 6 7 8 ý9 1
Figure 2-8. P(w:k) for three-dimensional isotropic noise projected on a two-dimensional surface
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Consequently, we have
~. .%

SO(W) ,kJ 12 kor Zr J7, ( kor J / kor z-

Sy6 )= 21rk-"' 
')-:2"

=SO(W)-- k sin -- cos -- '= So(co)sinc(korz) (286)

We observe that we are led to the same temporal frequency spatial correlation function as with

-pherically symmetric noise (see Eq 2 52) In a subsequent discussion, we explore the reason tor this U

Example 5b - Two-dimensional representation for noise with a high concentraton oflow N

wave number components

Let us assume that the frequency wave number function Py(co k) has the formI r1
Py(W ) = So(CO) 2 - [ k°ij (287)

7Tt
2k0

2 10 k\0 J)

This wave number function, shown in Figure 2-9, corresponds to a high intensity source near kr = 0

which may be due to a strong component normal to the surface Pursuing the same analysis we find

I r[1 -1/2 k
krPm(w:kr) So1 .2k, - To k. (2.88a)

Cnm n=m=0 (2 88b)

I 0, n" or m*0

Therefore, we have

4*l Sy(•osi) = So(wO) f• (2r89S- -w•.;:S (W "- ( ) (289)
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Figure 2-9. Two-dimensional noise with a high concentration of low
wave number components

We could pursue examples at length using tlis procedure, the generality of the approach,
however, should now be apparent

2.2.3 Representations for Three-Dimensional Plane Wave Noise Projected on a Two-Dimensional

Surface

At this point we investigate the relationship between the three dimensional representation

discussed earlier and the two-dimensional one just established, and which is appropriate when I.
three-dimensional noise is observed on a two-dimensional surface. We do this by considering

what happens when we confine our attention to a plane in space or, in particular, wheni zz=O

We define

zs =z = Zxax + z k k =ka+ ka (2.90)Y-y y-y
zz=O k=O-
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In terms of a three-dimensional wave number function

ffJ ~kejk
S(W0 zs=Syt zf = y P(W k)e -J(kxz, + k zyY dkxdk ydkz

P 27=r e dkxdky/(2.)
2  

(291)

Therefore, the two-dimensional wave number function is given by

Sdkz
P2y( f P3 y( k) d (292)

We have the two-dimensional Fourier transform pair[" dkz
s - P3 Y(w k) 2 = P2 Y(w ks) (2.93)

Let us now examine what happens when we project our plane wave riodel on a two-

dimensional surface An easy way to do tlis, which eliminates many of the issues regarding the

delta functions in several dimensions, is to establish the Fourier transform of Sy(w Ks) We

have from Eq 2 37a with 0z=ir/2

Ir 2i" sm(Ok) S k Jkosm(Ok)rZcos(Oz-.k)
Sy(W zs) = Jf dOk 0f d(k " So dY,,_ _

0 0 (294)
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1ý--5Z

We first perform the integration with respect to Ok over the regions [0,ir/I] and [*r/2,irl
(This is necessary since two points on the surface of the sphere for the plane wave model

*,;' ~project to the same point on the two-dimensional surface ) We now change variables in

each region Setting

sin(00 )-, 0<Ok<1r/ 2  
(2 95a);@5 ko

k,
si (7r-0k) '/2 <Ok <7r (2.95b)

we obtain

ko fdtkkr -Jkrrz cos(Oz-0k)
•.•S(o Zs)..

• we have

- ,, Soil sinm j-1 , krk

_rk

P( ks) = (2r)2  
5 

(297)

.4krko 2  

' kr)

• i The numerator terms represent those points on thse sphere which project to tihe point on asurface wiwth a two-dimensional wave number ks, the denominator term is the Jacobin of the
-. •,•_transforniation Intuitvely, the Jacobian plot inp hies thsat noise spread over a unit surface area•aQlon the sphere leads to a more intense value of the wave number fuinchon when it is in thseehorizontal directin than when n the verical directon

•.• ~38 
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"It should be apparent that we can also go from our snrtaLC wave model to a three-
dimensional model, with possibly some ambiguity as to Which hemisphere We also see that the
factor I/4 1 - (kr/ko) 2 

introduced in our Tdiebylhev expansion arises quite naturally as a
Jacobian in our transformation Consequently. both the expdnsions in spherical ]larmlOnicLS and

in our two-dimensional analysis have many comnmlon results
We again point ott that while the spherical harmnonlL expansion is quite natural for our

plane wave model. the Tlhebycltev expansion was only a suggested possible approach For some
types of noise fields, anotler expansion may be m1inl more concise, and one Should bring the
special function literatire, which we have not discussed at all extensively, to bear.

We have discussed the representation of plane wave signals in detail, however, we
emphasize the approaches taken, not the specifics of a particular example We now turn our

attention to receiver apertures for observing the signal field

:-55
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PART 2- RESPONSE OF ARRAYS TO VARIOUSNOISE FIELDS

3. RECEIVING APERTURES

In this chapter we discuss the general properties of receiving apertures, or antennas,

with the emphasis on characterizing their response to random excitations Our intent is to

understand how knowledge of the statistical characteristics of the ambient noise field can be

used to achieve enhanced performance. Toward this goal, classical beamforming theory is quite

useful so we introduce results from this literature that are relevant to our analysis.

We first consider describing the aperture response. The development parallels that of

Section 2 in that w. introduce a temporal-spatial domain description, followed by temporal

frequency-spatial domain one, and finally a frequency-wave number one of the response. This

is done by discussing several commonly used arrays and analyzing their responses Next we

study the role of sensor noise, which is extremely important in the analysis of the statistical

characteristics of array processing The noise structure is closely coupled to the array geometry

and usually does not lend itself to a separate analysis Finally, we consider the issues separating

continuous arrays, i.e., an aperture, and an array of sensors, i e , discrete array We simply state

that an array of sensors is the spatial dual to a discrete time, or sampling problem, with some

added complexities Since sampling in the time domain tends to obscure the more fundamental

issues, we choose not to introduce the corresponding difficulties in the analysis of spatial

processing, and, we devote a separate section to the study of the sampling questions introduced

by a discrete array.

40
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3.1 ARRAY RESPONSE CHARACTERIZATION

Intuitively, it appears that the description of a receiver aperture should be quite simple.

For example, if we have a linear array, as shown in Figure 3-1, which observes a signal field

y(t,z) over a specified time duration we would describe our received signal as

r(t,Q) = y(t,•aa) for (3.1)

12 1< L/2

We see that, just as for a purely temporal process, we need to specify the length of the obser-

vation, however, we note that we also need to specify the orientation in space by means of a unit

fector a, which is tangent to the array.

As a second example, we have a circular array as illustrated in Figure 3-2. The receined

signal could be described as

(R(cos0° cos•° cosO-sin•° smn)ax

r(t,O) = y(t +(R(cosO0o sin4o coso+sin4o sino)ay ,0 < < 27r (3 2)

+(R(-sm0o coso)az J

The formal description of the observation process can be quite tedious As a result, it is usually

necessary to keep the geometry simple in order to obtain an intuitiis understanding of optimum

array processing Similar statements can be made when describing the operation of a discrete

array, where one must specify the location of all the individual sensor elements For our

purposes we denote the array location by 92, 1 e , we consider observation points for zen2 In the

applications of interest to us, the observed signal is weighted, or shaded, and filtered at each

point, and then collected, or summed, together to form an output signal, usually called a beam

Figure 3 3 displays this operation graphically while Eq 3 3 expresses it mathematically

t
T fd

ro(t) = dz g(,r z) y(T z) (3 3)

To
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This expression has a parallel in classical filtering theory, howeser. it can be deceptively simple,

so a few comments are appropriate

First, one should note that there are two issues in specifying the beam operation the

geometry of the array, or aperture, as given by S2, and the weighting pattern g(t,r z) One can .

consider expressing these in terms of a function with finite limits similar to the analysis ol

temporal functions Generally, however, it is uýeful to separate the two The array geometry

imposes more fundamental constraints while the shading, or weighting, is adjusted within these

constraints In addition, the introduction of geometries of two and three dimensions can lead

to some very subtle considerations, especially with regard to spatial impulses, or singularity

functions, when one uses a theory dual to the Fourier transform pair relationship between the

system impulse response and the traisfer function

4In this context it is worthwhile to introduce a simple example to Illustrate the nature

of these subtleties Let us consider a linear array oriented along the zx axis We represent its

response as

fTf L/12
r dr d2 g(t,r.2) y(r azx) (34)

TO -L/2

If we want to use infinite limits and specify the array response in terms of a single function,

"we have

r(t) = d
1 1 1  

dz goo (tZ) y(" Z) (35a)

where

g(tr Zx) uo(Zy) uo(z5 ), Izxl < L, To < r < Tr

goo(t,r z) (3 5b)
0, Izxl>L, orr<TO onr>Tf

Observe that we incorporate the dependence along the Zy and z, axes via the use of the

impulses While this is a very straightforward example, similar results appear in more Lomphlcated

•__." contexts, particularly when one uses an analysis via transform methods For simplicity, we use

an integral representations as illustrated in Eq. 3 4
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One can introduce various formalisms to incorporate these impulse terms, providing one is

"careful about his description of the aperture and its response
We now develop the concepts of spatial filters in terms of their wave number response

This type of approach has many of the same advantages as a frequeciy domain analysis for

p,.rely temporal processes, and the two descriptins complement one another

3.2 FREQUENCY AND WAVE NUMBER DESCRIPTIONS OF ARRAY RESPONSES

"Representing signals and filter responses in the frequency domain leads to conivement

and intuitive methods of analyses In describing the operation of spatial filters on signals, one

can employ a similar analyses with comparable benefits In this section we introduce the

necessary tools along lines parallel to those used for space time processes

We assume that at each point z on the aperture 92 the filtering operation is time

invariant, such that

Sg(t,r z) g(t-T.z) = g(At z), At = t - r (36)

The temporal frequency response at a point on the aperture is given by

G(w:z) = J g(At z)e~jwAt d(At) (3 7)

(For discrete arrays, G(w z1) is the transfe- function of the ith sensor element )
In most of the analyses that we consider, the spatial operation is of fundamental

importance to us, we generally assume that the temporal frequency w is fixed ii that we are

concerned with a narrow frequency band If the signals involved are narrowband, this

analysis suffices, if they are broadband, one needs to integrate the analysis over the frequency

band of interest The most interesting and useful function is the frequency wave number

description which characterizes the response of the spatial filter to a plane wave with wave

"number k and temporal frequency w We define this function to be

Sg(k)= g( z)eJ( Z-) drdz f G(w z)elk'Zdz (38)

4¼ 45



A beam pattern can be obtained from the wave number response by fixing the magnitude of k,
usually at wic, and evaluating as a function of the elevation angle 0 and the azimuth 0

Since this function is of particular importance in our analyses, we introduce several
examples Tne simplest wave number response is for a linear array with uniform weighting

Sof-L ,: magnitude and phasing of e--Taa, or

g(' k) = - e jk-aagk d2 = sic[(k-kT)'aa-], (39)

-L/2

where kT is the wave number associated with a particular target direction This wave number

response is unity whenever k has the same projection in the aa direction as kT The width of

the main lobe along this direction is I/L between null points

If one introduces a triangular shading with the same phasing

g(r 2) 121 <L/2
L (310)

0, 121 >L/2

/L/2 I (121)"1 -JkT'.ha ejkaa~dQ '(3 11)g(co.k) = L" L
L/2

we obtain the wave number response

g(w k)= sinc2 E(k_T,) a_ !1-] (3 12)

This beam pattern has lower sidelobes but twice the main lobe width of the uniformly

weighted aperture
S If one wants to take the inverse transform of these functions to produce the

weighting pattern, one should be careful because of the aforementioned impulse terms

For example, assume _kT ay and aa = ax We then have

g (w.k)= sinc _- = sinc k (3.13)
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The inverse transform is

100 dw ff dk
G(T _) = d J d- G(wk)ej-i

-00 -0 (2•r)3

= 1Uo(Zy) Uo(Zx)Uo(r). NI1 <L/2

(3 14)

0,. JI1 >L/2

Other shadings would lead to a dMfferent frequency wave number response Extending the
array into the other coordinates just leads to a parallel analysis For example, a disc of

radius ra situated in the xy plane with a radial shading f(r) and a phasing ,.T*- generates
a beam pattern given by

g(k) f f f [(z2 e -JkT'z ejk'Zdz

S2 Z+z= 
2  [,x e

x y a

f dra/ rd~f(r)e(x--T) r(cs(O)ax + sm()ay)

"00 (3 15)

R rfr e jr[(kx-kT ) cos(O) + (ky-kTy) sm(0)J

dr f rdof(r)e y

WA 2 1
r f() Jo[rlkok lr dr

0

where

1kkTxy =(kx-kTx)
2 

+ (kykTy)211/2 (3 16)

Consequently, g(w k) is a zero order Hankel, or Fourier-Bessel transform of f(r) with respect
to the term hk-_kTx In general, for circular geometries the Founer-Bessel transforms assume

xy
the role of classical Fourier methods for linear arrays In the special case of a ring array
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f(r) = 2 ,a u0 (r-Ra) (3 17a)

the pattern leads to

gc:k-) = Jo [I k-T xy Ral (3 17b)

If the array forms a disc, then

f(r) r<Ra<P

itRa2

(3 18)
0, r>Ra

Jl(j& __-_Tlxy Ra)

N-46x Ra

(This is the familiar Airy disc response which is quite useful in optical signal processing)
Ring and disc arrays can be usea in two contexts typically These correspond to

I&KiTIxy = (kx 2+ky 2) 1/2 (3 19a)

when the target is normal to the array front, or

[k2 (\]1/2
It-kTlxy = x- co sin (3 19b)

when the target propagation direction is parallel to the array surface
We now investigate how we can describe the airay response in terms of g(w k).

Consider an arbitrary signal field y(t z). We can rerresent this function in terms of a fre-
quency wave number transform

y(t'z) = Y(co:k)e dw dk (3 20a)

f2 (21 r)

where

Y(C k) = y(t z)e"J(wt-k~z) dt dz (3 20b)
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The response of the spatial processor becomes

If7~~ Y (w j.r-t') dw -4k gt-
r( Y( De 2 (2  - z) drdz

(321)

f g(wiy w dk t c dC.w

or in the frequency domain

Ro(O -- • (co Dk_ Y(Wo h) A 3 2
0(2 7r)N 3 22)

We see that the aperture collimates the signal according to its wave number with a weighting

g(w k) Equivalently, we may consider that when we have a pure plane wave with fre-

quency WT and wave number kT; i e,

Y(cw D = uo(w-EOT) uo(k.-kT) (27r)N+I (3.23)

we are observing it through a window; gi k) such that we have

Ro (c,) = uo(w-' ) g(wT 4..T)(2r) (3.24)

It we want to select some particular region of wave number space, as we do when detecting

plane wave signals, g(w k) should be as narrow as possible However, just as in temporal

filtering, this introduces an attendant sidelobe problem, and much of optimum drray theory

essentially involves determining the best trade-off of these two issues according to a

statistical measure.

We have not introduced the most general type of spatial processing In much of

optical theory lenses are considered as wave number filters that generate a reradiated field

of the form

Youtput (-k) = 9(( k) DYmput (wkD) (3 25)

which is completely parallel to temporal filtering. With the exception of some application

to multiple beam outputs, we do not need to use this more general formulation for our

applications On closer examination, it does, however, suggest some interesting possibilities

for implementing our processors
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3.3 FILTERING OF RANDOM PROCESSES

The next issue of concern is describing how random pro:ess-s propagatc through
these apeitures Here, the frequency wave number repregentation of tile ambient noise field

is particularly relevant We confine the discussion to those random fields which lend them-

selves to this description Using Eqs 2 12 and 3 21, we have

y(t z) f dY(o k)e(wtkLz-) (3 26)

and

d RO(w) = k) dY(w L) (3.27)

Our harmonic analysis led to the result that disjoint regions of the frequency wave

number space had uncorrelated increments dY(w _k) The output spectrum is, therefore,

given by'

ftfl~w )2 dk
Sro(W g((:k) P(J:k) .-- r- (328)ro (27r)N

This particular formula is extremely important in our subsequent analyses It is parallel to

the input-output rela t
ion for temporal spectra

Soutput (w) = IH(w)12 Sm put (w) Q 29)

VWe integrate over all k space because our aperture acts as a weighted collimator of

the ambient plane waves If we want to examine a particular region of frequency wave
number space, e g, to make an estimate of Py(w k), the above formulae implies that we
look at this region thiough an aperture weighting of Ig(wo k)12 

Ideally, we would like to
make this function as impulsivc as possible The finite aperture limits our ability to uo this
We are again led to a trade off b( tween sidelobe level-which causes the other regions of the

space to interfere-and the beamwidth which compromises our resolution

'The vector output, or multbeam, generalizaton of this is gren by

o. (2.
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1 -6

One can considerl gkw k)1
2 

to be the power transform function for the aperture

It would be convenient to define the aperture autocorrelation function as the inverse

Fourier transform, or

RG(oz)=fg(w:D 2 e dk (330)

When one accounts for difficulties with spatial impulse functions in inverse trans-

forming g(w k), it is not surprising that these are compounded when dealing with lg(c k)I2
unless one is dealing with linear or planar geometries

3.4 SENSOR, OR RECEIVER, NOISE

Any real, or physical, receiving aperture cannot measure the incident signal field
perfectly, as the observation operation is inherently noisy Sometimes this noise may be

insignificant compared with other system noises, however, it does ultimately set limits
on the performance of the receiving aperture and on any subsequent processing Th~s sensor,
or receiver noise typicafly may manifest itself in several different ways The electronics of the
sensor elements and their associated preamplitiers, microseisms for seismic systems, or flow

noise past the hydrophone tor underwater acoustics are possible sources

In our disiussion, this component of the noise process, denoted w(t z) is modeled

as being additive such that the ambient signal field plus the receiver, or sensor, noise is
recorded at the sensor output The noise w(t z) has temporal and spatial bandwidths that are
much larter than any other processes of interest The essential aspect of the model is that the

observation noise is uncorrelated among sensor locations For a continuous aperture. a, this
implies that the space/time correlation function across the receiving aperture is given by

Kw(tr z,ý) = E[w(t z) w*ýr NOS o(t-r)89(z- (331)

The use of the operator -n(z-ý) deserves some comment The Q2 subscript on the 5n indicates
that its sifting property as an identity operator is defined only across the extent of the aperture

At first glance it would seem appropriate to model the white noise as being uncorrelated across

all regions of the sjatial domain Unfortunately, such a model can introduce fundamental

difficulties, and divergent results for aii otherwise realistic model are often obtained For
example, this occurs in the filtering of two dimensional white noise with a linear array

For a discrete array, the covariance between elements is given by

Kw(t,T:zL,zJ) = E~w(t.z,) w*(r.zQj)= NoSo(t-r)6 ,s (332)
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where the ith element is denoted by its location z, (Often the spectral level No is denoted

by an effective operating temperature Teff such that one has

No = kBTeff ( 33)

where kB is the Boltzmann constant, I 38 X 10-23 watts/Hz-°K

As pointed out above, this white noise component is present in virtually all physically

motivated problems Sometimes it can be realistically neglected as other effects dominate the

system performance From a theoretical aspect, however, one can demonstrate that many

detection and estimation problems are singular, i e , they predict perfect performance if the

white noise component is not present For example, in many of the array processing problems

that we shall study, the gain produced by the array may become artificially large as the number

or density, of the sensors is increased Essentially, results which are singular imply a perfect

measurement of the ambient field and then a resulting canzellation proce-, or a very sensitive

situation where very precise knowledge of the system parameters is required Therefore we

consider a moie detailed study of the role of the receiver, or sensor, noise in our analysis of

array and apertures Unfortunately, the issues are not nearly as apparent as they are when

one deals with temporal processes While duals of temporal process results can be used

extensively, some aspects of spatial processing have no duals as they are inherently coupled to

the array geometry

In this section, we present some issues regarding receiver noise We discuss the possibility

of using frequency-wave number concepts and the problem of equating discrete and continuous

array performance Finally, we discuss a conservation property which sets the minimum output

level that the receiver noise can have

At first inspection one would agree that receiver, or sensor, noise can be modeled by

- using a flat frequency wave number spectrum analogous to that which is done for purely

temporal processes. Intuitive as this approach may be, it is fundamentally incorrect, except in _

some very special, albeit important, situations The basic difficulty is that the noise is coupled

to the geometry of the array To illustrate this, we examine two situations

Assume that one is using a line array which is operating in a two-dimensional

environment The array is capable of discriminating, or filtering, wave numbers projected

along the array. Consequently, if one uses a two-dimensional flat wave-number spectrum,

i e , two-dimensional white noise, the noise power which propagate- through the filter along

wave numbers with the same projection is infinite. Similarly, one can use a ring array as

described by Eq 3.15 which has resolution in all directions Here the wave number

response does not fall off rapidly enough asIki -I L , it behaves as I / ILI and the noise power

propagating through the array to ihe filter output is likewise infinite, i e,

No ffdk Jo
2

(Ik-k.TyRa) (334)
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Thus one cannot routinely extend one's concept of temporal white noise in representing
sensor noise This is unfortunate since it introduces some difficulty in applying frequency

domain concepts to the design of aperture response weightings In some situations, particularly
linear or rectangular arrays, one can consider the noise to have a spectrum which is flat with
respect to the wave number as projected along the array surfac.e Using this approach, one can
proceed in the study of linear arrays more or less in parallel to a temporal domain analysis
For more complicated arrays, e g , crossed arrays or ring arrays, one needs to be quite careful

about the effects of this noise

In our study of arrays, we generate an aperture weighting that produces a beam pattern
which is directed at a specified wave numbcr, yet suppresses the background noise If this

background noise is composed of just sensor, or receiver noise, the optimum aperture
weighting to minimize the noise power in the beam output is to phase the array towards the
target wave number and use a constant amplitude weighting. This is the spatial analog to

matched filtering Verifying this result is quite direct If we wish to direct a beam at wave

number _kT, we require

g((.kT)= (wz)e -T -dz= I, V o, (335)

with the noise power response given by

Sro fdzl fd2 G(w L) G*(w z2 )No S(zl-z-2)k
92 2

= N f dz IG(w'ZI2  
(3.36)

Straightforward application of the calculus of variations minimizes Eq. 3.36 subject to the
constraint of Eq 3 35 This yields

G(w z) =Aj- (3 37a)

where

A = Jd. the "area" of the array (3 37b)

and
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No(-)

Sno(t) = A, (3 37c)

If we alter the aperture response so that some other noise source Lcai be Lomnbated we increase

the effect of the white noise at the output of the beam It is when these effects reach

equilibrium that we have one of the fundamental tradeoffs which one must make in deter-

mining the optimum aperture response

3.5 DISCRETE ARRAYS VERSUS CONTINUOUS APERTURES

We have chosen to pursue an analysis which models the aperture as a continuum In most .

physical systems, the sensor elements are discrete which leads to matrix-vector formulation
We have gone to a continuous aperture formulation for the following reason

A discrete array is essentially a spatial sampler As such, the sampling aspects of the

analysis, particularly the imbedding of the geometry in vector notation, often tend to cloud

the more fundamental issues of the spatial processing Many arrays in current or proposed

systems involve interelement spacings which are so small that one is well above the spatial
Nyquist sampling frequency Here, a denser sampling of any coherent, or spatially bandhimited,

part of the signal field is redundant In these situations, the continuous approach is more

informative regarding the actual processing, and the performance of the physically discrete

system is closely approximated by the continuous aperture. Remember here that, in contrast

to temporal processes, one is always working with bandlimited signals that arise through propa-

gation in the medium They are strictly bandlimited due to the fixed upper limit of 2ff/?. for

the maximum value of the wave number, or spatial frequency When one pursues a temporal

analysis, the continuous representation is usually more natural, although the implementation

may be done using a sampled system with digital filters This does not imply that we can
neglect these questions It is simply our assertion that we feel many of the concepts of

1,1,k optimum processing are more transparent and can be approached more directly using a

continuous analysis.

There are two issues which concern us in comparing discrete and continuous arrays

"1; First, if we have a beam pattern which we generate with a continuous model, we want to

determine the interelement spacing necessary to produce approximately the same beam
pattern by using a discrete array Second, we want to equate the effects of sensor, or receiver

noise, for discrete and continuous arrays so that we can compare their performance in subse-

quent sections To solve both of these problems in general for an arbitrary array geometry

is quite difficult Significant understanding can be obtained, however, by examining

linear arrays
Let us assume that we have a linear array with ,n aperture weighting
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G(T z) for z =aa, I Q1 < L/2, (3 38)

which produces a beam pattern g(w k) If this array is sampled with a spacing AL and

the resulting beam pattern analyzed, one obtains

L
n= _

g(w k) Gn(W)e n (3 39a)

L

2AL

where

Gn(w) = G(w naaAL) (3 39b)

g(w j_) and g,(w k) can be related via a direct parallel to the temporal sampling theorem

This yields

I 0 27rn
As L F_ =(w k a) (3 40)

n=.o

Consequently, we have the spectrum repeated at intervals of (27r/AL)aa Two effects are

significant here If g(w k) is significant for k outside the region I k§aI < 7then dis-

tortion is created via ahasing a classical problem of temporal filters Thus, we should

consider the factors that govern the spatial bandwidth of the arrays Conventionally, the

minimum beamwsdth measured in radians/m of an array of length L is on the order of

(21r/L), or 1/(L/?,) radians The implication for this minimum bandwidth is that at least two

samples spaced at an interval of AL < L/2 would suffice The difficulty here is that this

response would be reproduced at intervals of 27rn/AL or 27r/L which could introduce

significant sidelobe issues With larger beamwidths mu,,, samples are required, but the side-

lobes remain To alleviate this, one usually shifts these sidelobes out beyond the region of

propagating signals, I e., beyond the wave number regioi in which other sources could enter

In effect, one is controlling the beam pattern across the region Iki < 21r/N. not simply across

the main beam region Examination of the proof of the sampling theorem shows that this Is
more of the essence than just the simple prevention of ahasing The sampling required then is

2'T > 2 2•r', (341)
AL
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or

AL < X/2, (3.42)

which is a classical result in array theory

Related to this issue is the theory of superdirective arrays, defined in the conventional
sense to be considerably narrower than that indicated by .lassical theory with either discrete

or contii'uous signals This is done at the expense of creating a large sidelobe structure outside

the region where propagating signals can arise, i e , for ikl > 21r/N. In this case significantly

denser samplings will be required to approximate a continuous array and to prevent aiasing
Alternatively, one could start from a discrete formulation directly, as is done in the

Dolph-Techebychev [16] theory When more than one coordinate, or dimension, is intro-

duced, a number of issues appear wlich do not have analogs as developed in the classical
temporal theory.

The second issue that we wish to consider is the effect of sensor, or receiver, noise
In particular, ideal sampling of such a noise field by a point element cannot be realized The
question arises, then, of how we can compare the continuous white noise level of Eq 3.31,.

for an array, with finite extent and discrete white no.se as expressed by Eq 3 32, for a

finite aperture element array

The key to this analysis is to consider that a discrete element is small enough that

any coherent part of the noise field is observed undistorted while the incoherent, or white

part,i s averaged over an effective element region Essentially, we have a spatial parallel of a
finte time averager Let us consider an example relating the equivalence of a continuous

hnear array and a very densely spaced linear point array
We assume that the Ith element of the discrete linear array is located at location

zn = (nAL,0,0) and the interelement spacing is AL, as shown in Figure 3-4 By assumption,

this is very small compared to any spatial correlations of the coherent parts of the observea

field to the noise levels We consider that the output of the nth sensor is even by

7 x+AL/2

I fnrn(t) y(t )dzx (3 43a)

Xn-AL/2
n

where

Zxn nAL (3 43b)

VV.
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CONTINUOUS LINEAR ARRAY
LENGTH L

L

DISCRETE LINEAR ARRAY
LENGTH L, SPACING AL

Figuic 3-4. Continuous and discrete array

and

T= (zx,0,0) (3 43c)

If we consider y(t z) to be composed of a coherent part s(t z) and spatial white noise w(t z)

with level Noc, we have

rn(t) - s(tzn) + wn(t) , (3.44a)

where s(t,7In) is the approximation for the coherent part of the signal and the sensor noise is

Xn+ AL/2
S n

Wn(t) = f w(t:z) dzx (3 44b)

- AL/2

The cross covariance between elements of the wn(t) is given by

Nc,LNc a 5t-T-(345a

E[wn(t)wm(r)] anin 6nm(t-T) N Nod nm e(-)(34a

where

N Noc
od AL= (3 45b)

i.e., the effective noise density for the discrete element is smoothed over the sensor extent,

so that the larger the sensor face the smaller is the noise level. We finally point out that this

noise is not isotropic as it is uncorrelated from sensor to sensor no matter how close they are

57 i



In discussing optimum array proL ing, we consider the comparison of discrete and

continuous models in more detail This equivalence can be made more specific and the
vahdity of some rather qualitative statements in replacing a discrete array by a continuous
equivalent is somewhat surprising

3.6 KARHUNEN-LOEVE EXPANSIONS FOR SPACE/TIME PROCESSES

In the design of array processors which utilize the statistical properties of the

ambient noise field, one often needs to visualize the signal, which is observed over a segment

ll of time and across an aperture in terms of an orthonormal expansion This is particularly

true for detection theory issues By using this expansion, one can design and specify the

resulting performance of the array processor, which operates on a random field by apply-

mg classical detection and estimation methods to the generalized Fourier coefficients of

the expansion of random variables. This procedure becomes particularly easy when the

functions in the orthonormal expansion are chosen such that the Fourier coefficients

are uncorrelated This is the essence of a Karhunen-Loeve representation 117] whose

use is well established in random process theory. We discuss brieflý some aspett of
this representation The only issue which is somewhat peculiar to our problem is

that we need to incorporate the spatial aspects, this generalization, however, is straigOt-

forward.

At this point, we are forced to make a somewhat artificial distinction between con-
tinuous apertues and discrete arrays With a continuous model we need as expansion of the
processes over the product space created by the observation time and the receiving aperture,
while with discrete array a more natural approach is to use an expansion tor veto, random,

processes where each component represents an indiiidual sensor output. The issues in the

development of a vector Karhunen-Loeve expansion are discusad by Van Trees 1 17] Since we

pursue an analysis that treats the array as having a continuous aperture, we use the

former expansion over the continuous space created by the observation time and the

receiving aperture. Generally, it is quite easy to take the results and generate the parallel

discrete array or vector formulation We emphasize that the expansion is done over a

* specific receiving aperture and observation tune rather than over all space

We state, without proof, the folio 'ing theorem (Ref 5, 6 and 17 )i

Assume

I that y(t,z) is a space/time random process defined over a region which includes

the interval To < it < Tf and the spatial domain 9
2

- and

2 that y(t,z) has finite means square value, i e , y(t z) e £2, or

Efly(t,z)1
2

] < o, Vt,&.e[To, Tfl,

'The essential issue in the proof ts she validity of Mercers theorem where the expansion region is the space/ltne field rather

than just a one-dimensional closed interval
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We can then represent y(t z) in an orthogonal expansion with

N

a) y(t Jm) = hn ynn(t z_), t e[To,Tf],. z e E2, (3 46a)

N-- n=

where Yn f dt 0*[ (t z)y(t.z)dz (Generalized Fourier

coefficient) (3 46b)

b) dt dzn* (t Z)om(t z) dtdz Snm (Orthogonal Basis
TO functions) (3.471

c) Efynym*I = n
6
nm (Uncorrelated

Coefficients) (348)

if, and only if, the Karhunen-Loeve integral equation

TfT

Xnn(t z) = dr Ky (t,r z_)¢n(:) (3 49)

is satisfied This is a very straightforward extension of the Karhunen-Loeve theorem for

processes defined solely over a temporal domain or index set.
In general, the actual determination of the eigenvalues and eigenfunctions is

difficult. For the case of processes defined over only a temporal domain, several basic
methods have been deveioped for determining analytical solutions (see ref. 3 and

references therein) Except for some special cases, one usually must resort to computational
procedures to implement these methods The extension of these methods to space time

processes would require that (a) Py(w k) is a rational function of the components of k,
(b) there is a partial differential equation, describing the generation of the process, i e , a

distributed system model, or (c) there is some very special property of the kernel which

leads to an analytic result
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Even if one of these situations does exist, incorporating the geometry of the array
poses some very fundamental problems The overall situation, then, is that direct
implementation of this theorem is by no means a trivial task A similar situation exists
for discrete arrays with many elements If there are a large number of significant eigenvalues
in the expansion, this implementation rapidly becomes unmanageable with an array
containing a large number of elements Consequently, in our approach and discussion, we

use some relatively simple examples which can be approached analytically These highlight
the major issues involved and lead to considerable insight into the behavior of more com-
plex problems Fortunately, in many cases of practical interest, we can determin, approxi-
mate solutions by "factoring" the temporal and spatial dependence. This leads to an
analysis which is done in the temporal-frequency domain Consequently, for a nm'rrow
band situation we essentially have a complete analysis, whereas for a broadband situation
we must coisider the issue of integrating our result over the band of interest For temporal
processes with stationary kernels and "long" observation intervals, we have a well-known
result that the eigenfunctions become sines and cosines, or complex exponentials, and
that the eigenvalues have the same distnbution as the spectrum of the p-ocess This result
allows us to "factor" the temporal issues out of the problem.' The essential step in this

factoring is to assume that the solutions to the integral equatiorn of Eq. 3.49 have the form

I Jnwot
01 (t:z) = P e ,'m(nwo z), (3 50)

where oo 27r/T and we have repiaced the single index i with the double index n,m

(Since both are countable schemes, this is permissible) If we substitute this into Eq 3 49

we obtain

I Jnwt
mn z.e Xm(neo' _)

=' T Ky(t-r z,') I- ejnwo •m(nwo)drd"

-T/2 S2 V-

=TI/2 •f('- Jt(t-r)• I Jn(407
Sy(w:z,•)e dS - e 4.,(nwo:')drd"

17The term "factor" is somewhat misleading since the tempural dependence is still imbedded in the spatial parameters
eg, the magnitude of the wale number in our plane wake model
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=f Syw P1)e [T sin [-n-.'12) 4T (w )ýd (3 51)V. 12

for

T T

2 2'

NI The term in the braces of the last expression of Eq 3.51 approaches an impulse as

T becomes large We, therefore, have

'Xm(n(4o z-- e 4)m(nwoo.z)

VT•, (3 52)

-- e Sy(no:zS,) 4m(nwo ý)d', <t 2' &*S . 2 2'

The final result is that when dealing with temporally stationary random fields observed over

a long time interval, we can obtain an approximate solution to the Karhunen-Loeve equation,

as expressed by Eq. 3 49, by factoring the complex exponential temporal dependence and

solving the equation 60

Xm(nwo) 
4

m(nwo:Z) = Sy(nwo z.) 
4
Dm(nwo )d', z e E2 (3 53a)

In this foraulation we can solve for the spatial factor with the frequency of the complex

exponential assuming the role of a parameter In the case of linear arrays, Eq 3 53 is

identical in structure to the equation which needs to be solved in the Karhunen-Loeve
expansion for temporal processes Consequently, the repertoire of methods that exist for

solving this equation can be brought to bear here. For example, isotropic noise with its

spectrum Sy° (cw) sinc [ko lAzl] corresponds to the situation with bandlimited noise which

has prolate spheroidial waveforms for as solution Unfortunately, the temporal situation, in

which the spectrum is rational does not have direct application since it implies a wave number

function of infinite extent Since all of our propagating signals have a bandlimited wave

number spectrum at a given temporal frequency, such models can serve only as approxima-

tions Array geometries other than linear ones can be quite difficult to analyze and usually

lead to copious use of the higher transcendential functions This is one of the reasons for
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using relatively simple array geometries, for we uan extraOt the fundamental Loncepts under-

lying the array processing operation without becoming enieshed in a coImph.ated anajysis

Even at this, however, we must develop sonic nontrivial spatial results for whiidl there is no

temporal parallel

In most ot the problems of interest to us. the observed process rtit z) is composc ; of

two components one has a finite mean square value, tihe other is space/time white noise The

first of these has a well defined Karhunen-Loeve expansion while the . lite noise does not

However, across the aperture and observation interval we have for No times the identity

operator

No 6(t-T) 6S2(z-_) No O(t z) (r T), - < t, T < T (3 53b)
n= 12 

2

Z, C? R2

for any complete, orthonormal set Consequently, we can operationally use the result that

white noise is "white" in any coordinate representation, in that it has eigenvalues of No when

projected against any complete orthonormal representation Expanding a signal with an

independent additive white noise component we have

Kr(t,T zS) = Ky(t~T z) + N 0 5(t-r) 692(z- )

TT
S= L.. (Xni+No)om(tZ) Om(T 0' 7<t . T< 'j.

z,e S
2  (3 53c)

so that the eigenfunctions remain as they are lor y(t z) alone, while the eigenvalues become

Sr xy
X y + NO

Henceforth, we suppress the r and y superscripts

Finally, we note in the case of what are termed "separable kernels" we can solve

Eq 3 53a exactly The situation of interest to use here is that when the spectral covariance

function is composed of directional noise components, i e.,

N N j(kz -. )

Sy(ui __ _ S (w)e (354)
1=1 j=l

the solution is also composed of terms ekz i e,
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N~

N

4)~w m~w~eL*,( 5

k=l

Substituting this yields F

N

xm(nwo)Z Cmi(n&)o)e -,,

1:1

f N N
-e cýLf:Sj(nwo) e - J~ Cmk(nwo)e -

SR i ilJ=l R=I

AA-

where

I jk-Kde d

The solution to this is given by

mnc) -[S(ncoo)] Isinc52(AL) I m(nc*)o) = (3 57a)

where

S1 I(nwo) S I2(nci0 ) ...

[S(nc%)] A (3 57b)
521(nw,) S22(nwo)
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[smcn(Ak_'l= (3 57c)smsinc[_j2-k1 ]

sinc&21k 2 7klI I

LjAl
[ CmlO~"'o)-

A
_C.m(njo)• Q"( 57d)

This is a homogeneous matrix equation which has N solutions at any given frequency

(nwo) We will discuss the solution to it at various points where we encounter noise fields

with directional components.

We now consider the application of the results to our fundamental problem of interest-

the design and performance analysis of optimum processors

4. OPTIMUM ARRAY PROCESSING FOR PLANE

WAVE SIGNALS

In the previous sections we have examined the representation of space/time random
signals and the response of apertures during observation Until now, the two most important

quantities were P(w k), the distribution of a homogeneous space/time signal in temporal and

spatial frequencies, and g(w k), the response of an aperture to a plane wave signal with fre-

quencies w and k In the process of doing this we have now developed tire concepts necessary

for describing array methods

In the design of an array processor. the structure of the desired signal and the ambient and

apertare noises all have a fundamental influence. The classical problem in array prouessmg

consists of finding the optimum beam pattern within the constraints of the array geometry for

observing and/or detecting a plane wave signal with a wave number kT Usually this is done in

a somewhat intuitive manner Beamwidth and sidelobe level must be traded off and nulls are

positioned, all under the influence of the constraints imposed by the array geometry and the

noise field encountered. The methods of optimum array design essentially address the problem of
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giving a rationale to this procedure in that the "optimum" processing method is specified for
a given array and noise field. Naturally, we must make our definition of optimality precise,

and the formulation of and solution for the "optimurr," array processor is the topic of this

chapter.

Like many problems in which linear processing, quadratic performance measure, and/
or Gau~ssian statistics are introduced, this one is also quite robust in that the same solution

can be arrived at via several different methods. We have chosen a formulation which empha-
sizes the linearrty and quadratic aspects of the modeling. Various app- acthes have been

unified for discrete arrays [ 18]
We focus upon processing for signals which are plane waves At the end of this section

we comment on array processing for spatially spread signals, i e , the signal is composed of a
possibly uncountable number of plane waves Despite their importance as a more realistic

model for many problems and the numerous parallels to temporal random signal detection,
the literature does not have many contnbutions on spatially spread signal detection. We
shall subsequently discuss some aspects of these problems.

One of the important mathematical entities introduced here is the inverse kernel

This is essentially the continuous analog to an inverse matrix and frequently appears in

detection and estimation problems. Many of the operations appropriate for matrices have
parallels in the continuous case. This function is important in our analyses in later chapters

Therefore we emphasize its importance early. Van Trees offers a more detailed discussion of

this function [3].

In this section we have a very concise formulation and solution for finding the
optimum beam pattern, or array processor. This solution can be invoked to explain how large
numbers of array processors operate, from superdirective arrays, to endfire gain, to null place-

ment procedures, and to sidelobe level effects. It provides a unified approach to the design of
beam patterns and array processing. One of the goals of our later chapters is to develop enough

important examples so that the mathematics become more transparent and the underlying

theory can be used in an intuitive and practical manner

4.1 OPTIMUM WAVE VECTOR RESPONSE FUNCTIONS AND MINIMUM

VARIANCE ARRAY PROCESSES

Our mathematical formulation for determining the optimum beam pattern reflects
our intuitive concept of how a good array processor should perform. We want to observe a

plane wave signal, which we call the target, with temporal frequency W and spatial wave
number _kT. To do this we want to direct a beam in this direction and obtain a response which I

has a minimum of interference caused by ambient and sensor noise We may want to

determine the signal wave shape itself or we may simply want to measure its statistics
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Mathematically, the operation of directing a beam is introduced by requiring that

4(41)

g0 (w~ iT I hT) G0 (w z~k t~kT" dz = 1, V.o(.)

while minimizing the effects of the noise leads to the requirement that the output noise

power

a 2 kT) =So(&•))=• Go(--.ZlkT)Sn(- z,•')Go*(w-•" JkT) did., (4 2)(2!

be a minimum Note that o2 (wlkT), the minimum noise, is a function of kT and that

Sn(Wz,•) is the temporal frequency spatial correlation function observed across the array

aperture. The constraint of unity response is a convenience. We could require only a finite

response; but the result is deterministic, so we could arbitrarily scale it back to unity.

If the wave number versus frequency for a plane wave signal is giyen by k•T(w), then

requinng

9 o [W k_.T(4) 1 _T(W)] = 1, VW, (43)

will lead to an array processor which observes this signal undistorted This approach has been

used to formulate the optimum distortionless filter for discrete arrays

We are presuming that g(w.hlkT) can be designed independently for all W, ie , the

solution at w, is not influenced by the solution at "2 The total broadband output noise for

observing a signal is given by

1%

2 (.2 4
o a (4.4)

A pictorial representation of our formulation is indicated in Figure 4-1

The solution for the optimum beam pattern can be found by straightforward

application of the calculus of variations where we impose the constraint using a Lagrange

multiplier 3w(). For optimality we require that for all choices of SGo(.sJkT) that

1
We use the notaltio

0-~. k~k,)

to represent a beam pattern in . fora beam "directed"at wve numberATce.

N.~ k T6kT)
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= Sn(j z,[Go*(w- -kT)+e6Go*(w _ diT)] dzd[

(4.5a)

"+ 1(w) f [(G o(w Z1 kT) + e6G o(w K IkT)']je t 'z

jkz"+ (Go*(w:z _ktT) + e6Go*(w z IWT))e t) dz
e=0

or

0 =2Re I 6O(-G( I' kI Sinn(€ z_•)Go*(cw.kT) + (w)e - -dzd]

(4 5b)

AMBIENT

kT SIGNAL DIRECTON

•G) kWkT)

ARRAY

ARRAY OUTPUT:
r(t) = s(t) + nit)
R(w) = S(w) + N(W)

Figure 4-1. Pictorial representation of the desigr of the optimum beam pattern.
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This implies that

j S,(w:_z,) Go*(w 'kT)d_ = - ((w)e ,. z e S2, Vwo (4.6)

We first need to eliminate the Lagrangian multiplier O3(w). This can be done by applying the

constraint of Eq 4.1, and we have

4(w) V Go(w zkT)Sn(j _z,ý)Go*(w:ýI kT)dCzd_ (47)

which implies that 3(w) is a real quantity

Substituting this into Eq. 4.6 yields the implicit solution for G(w:L~kT).

f Sn(W._Z,_) Go*(wT[

Go(w'z XT) Sn(w.z,. ) Go*(w:['j T)d-' d.' (4.8)

5 Eq. 4.6 specifies the optimum beam pattern as the solution to an integral equation

which appears often in solving temporal detection and estimation problems. Some reflection

should indicate that we have a problem almost parallel to that of detecting a known signal m

colored noise. We have a known signal structure, d-4-, plus a background of spatial colored

noise, n(t:.Z). With the exception of a normalization constant, the integral equation for the

optimum array weighting G(w-z IkT) and the optimum correlation detector are the same.

The solution for G(w..&IkT) can be found in a number of ways. First, we observe

that we really want to solve

4 Sn(w:).() ejkT'Z, z eaVW (4.9)

and then scale the solution in amplittide to satisfy the constraint
We want to introduce the spatial generalization of the inverse kernel. The defining

property of this function -s specified by
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f Sn(w '_-zP Qn(to.J%,•)dt"' =6n(z-.1), z, 'e S, (4 10)'

1 e., the spatial functional analog of an inverse matrix. We also have

f Qn(to.-,z) Sn(t.z',ý) dz' = 5SQ(z -. ), z. _eE2 (4 11)

which corresponds to the result that right and left, or post and preinverses, of a matrix are

identical. One of the important properties of the inverse kernel which we use relates to its

expansion in terms of its spatial eigenvalues and eigenfunctions. Following the temporal

theory [3] for example, we can expand both Sn(W z,!) and Qn(Wt_) in terms of the eigen-

values and eigenfunctions found in Section 3 6 in the discussion of Karhunen-Loeve expan-

sions Mercer's theorem asserts that we have the expansions

Sn(to4z,)= l Zmt)mt~)b*t_', zC'S2 (4.12a)

m=1Qn~to'•,•)= £ P- (to)m.oS),mt:2.' zJ•, (4.12b) [

m= I in

where ?sm(cw) and 'bm(wo.z) are the solutions to Eq. 3 53a. In most cases n(tz) is composed

of a correlated, or finite mean square, component and a white one. For this we have

Xna(w) = NO + Xy Mto (4.12c)S~m

where ,Y (wo) is the eigenvalue of the correlated component We then havem i

Qn~o:_~j.) = (No + Xym (.o))-' 4,m(C0*Jz) m(P(O-1)
m=m

= [(t-r) yS2(z-.) - H(l .,')], z,1 e 12 (4.12d)

lThe fancteon •
5
•z-C) is an impulse, orgeneralized, functon which is defined only across the arrny or aperture n5 Conte

quently, no sfotng property outside of this domain is implied The same function was used in discusnng sensor noise
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where

SxY (W)H ( W:zS) =n • ( W *.z_ 4)• (oW , z, J CE 2 (4.12e)
mlNo + Xy (w)- -

m

All of these results with inverse kernels are complete duals to the temporal situation therefore
we refer to ref. [31 by Van Trees for a more complete discussion

Returning to the explicit solution for G((.zlkT) we conjugate Eq 4.9, employ the
symmetry propertses of Sn(w.z,") and then post multiply by Qn(wz',_) ard integrate with
respect to t. Using Eq. 4.11 this yields

Go(o MIkT)=--P(w)f eT Qn(w:4z,) dJz, e S2 (4.13)

Apply the constraint of Eq. 4.1 and we have

,jTZ JkTIA

0(60 e- Qn( ,')e dz'd. ,, (4 14)

and the final solution for Go(cwiLkT) is

G( (-4kT1e Qn(w z,) dz

S"Jk~-iT'Z: ,,jkT"T q~l ( S

e Qn(•.z ,-")e - zded

The optimum beam pattern is given by

II kT zQn(w:z)e @d

o('• 'kkT)ekTz , (4.16)

e Qn(W _.'')e dz' dC
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Note that go(w'kTIkT) is unity This last equation is particularly important in our subsequent 4

analyses where we use it in contrast to some of the more conventional beam patterns discussed

earlier Equations 4 15 and 4.16 constitute the solution for the optimum array weighting and
the optimum beam pattern. The fundamental issue in determining a solution is finding

Qn(cW _z'). In general this is a difficult problem Fortunately, for the examples of interest
we can determine the inverse kernel.

The only remaining issue is to find an expression for the output noise power 2o2(wlkT) 'Z'4,

of the optimum beam pattern We simply substitute our solution into Eq 4 2 Using the

properties of the inverse kernel we obtain 01

2 -jk(!T-z jk- 1
S(WIkT)= e Qn( -, -e dz d. (417)

We should contrast this to the output of an arbitrary beam pattern

o
2
(w IkT) =[ff G(w:zjkT) Sn(w'z,_•) G*(w: rkT) dzd.4 (418)

The term (kT) 2
(w ikT) can obtain over all choces of G(w,.:ZLkT).

4.2 HIGH RESOLUTION ESTIMATES OF THE FREQUENCY WAVE NUMBER

FUNCTION P(w:k)

One of the most difficult aspects in applying techniqueswhich utilize the process statistics

is determining the actual statistics themselves There are a number of ways to do this, and a
large number involve measuring sample covariances of the observed signals In array processing

work, this is typically done as a function of frequency. At each of the array locations, a data

segment is first transformed and then used as in the calculation of the estimate of the

covariance, i e., we have

N
N R(O-K Rn*(-°.• (4 19a) '

where
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- -n.a s ,t r t .'.-•, vv nj q -,_r.z:, (9, . -z -2 ,_. t. -.- •',- C ,,'• ";vcr.;' • '"-2" •'-: 7. X .L •. '••,•' < .¶-. V r ; J'- -:' .

f(n+l)T4AT

R J(WO-z) = r(t z) e-1i0t dt (4 19b)

nT=AT

A
The important point is that one obtains S(w z,') only across the aperture, or array The problem

A -

now is to convert this into an estimate P(w k) Since the aperture is always finite we can not
A A

simply transform the estimate S(w z,ý) and obtain P(w _), no matter how accurate our co-

variance estimate is. This has led in the temporal theory to window trade offs arid the m-

direct, or Blackman-Tukey, spectral estimation procedures [ 191 Several authors have

brought optimum array processing to bear, and it has even had its impact on the estimation

of purely temporal processes [ 18, 20-221
We observe that if we were to measure the noise power originating from direction kT we

would direct a beam in that direction and try to suppress all other contributions of the noise

field as best that we could This is just what the optimum beam pattern does Now if we

measure the output noise power, a truly ideal beam pattern would yield only the noise power

stemminig from direction kT, since it responds to signals only with that wave number. The high

resolution method simply asserts that oo(wckT) is the best we can do in this respect, and it

represents the power in the signal field with wave vector kt with the remamdeý of it suppressed

in an optimal manner, i e., it is an estimate of Pn(W 4) Consequently, to find this high reso-
A A

lution estimate, Pn(w'kT) we find Qn(wz,') from the sample covariance and compute
A
P(w kT) as

fn(wOkT) [ I-ST n(W',A e dz dtj (420)

In essence, this procedure makes all the optimum trade offs in selecting the best estimate for

finding ý(w kT) Consequently, in relating our subsequent work to using for high

resolution estimates for P(w _k) we should examine how close 02 (w kT) corresponds to
P(w.k<T).

One of the less satisfying aspects of using this high resolution measurement method

is the difficulty in analyzing its estimation accuracy This contrasts to the classical procedures

where the effects of aperture extent and shadings employed can be analyzed in terms of^

confidence intervals. The nonlinearity introduced by the inversion operation for Qn(w ,')

leads to complicated analyses.

4.3 FREQUENCY WAVE NUMBER ANALYSIS FOR OPTIMUM WAVE NUMBER RESPONSES

Before discussing specific geometries, we reexamine briefly our analysis of optimum

beam patterns in terms of a frequency-wave number representation for the signals From Eq 4.2

we want to minimize the output noise power subject to the unity response in the direction of
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the target If we have a noise field consisting of a propagating component plus sensor noise,
we have

Sn~jkz(z) = dký + N06(- (421)

SS~~~n(w•:z'= [ f Pn(w -D'k(• (2,--N +N6a(-ZVo.• 41

We substitute this into Eq. 4 2 and obtain

02 (cWtIkT) I go(wtik11T)i 2 PnCO 1) dkff (21)N

+Nof Go(w•:k),2 dz (4 22a)

subject to the constraint

Sgo(-,:kT IkT) I (4.22b)

When we interpret the design of optunum beam patterns in the frequency wave

number domain, we can observe that we want to minimize the overlap of the frequency wave

number function and the beam patterns and the integral of the magnitude squared of the
weighting function across the aperture subject to the target constraint. Generally, minimizing
the two terms in Eq. 4.22a involves a trade off. Because of the constraints of the array
geometry, minimizing the first term introduces high sidelobe levels. Since we have

If G(w z-kT)12 dz >I g(w.k I-kT) 2 (423)1

sidelobes which are in excess of unity increase the second term using this inequality. Generally,
any increase in the sidelobe level increases the contribution of the aperture, or sensor noise,
to the output noise level. As a result these two effects must be traded off until the optimum
compromise for minimizing the total output noise livel is obtained.

'lt would be very use.id if we could use a generd form of Paneal's equalty, .Le,

J JJJ ( 2.)f

Ulnfoertnately, the mntegral on the nght falls to converge un mcny case.,
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4.4 BEAM PATTERNS FOR SPATIALLY SPREAD SIGNALS

In many physical situations, the signals which are the object of the optimum array

processing, or beamformer, are not true plane waves in that their frequency wave number

function is not impulsive This may occur in a multipath environment in which local

spreading is due to scattering, and gross spreading is due to separate travel paths Figure 4-2

illustrates a possible propagation situation leading to a spatially spread signal situation The

most evident effect observable at the receiver is that the magnitude of the signal covari _e

decays as a function of the separation of array location

We model the signal as a general space-tune process s(t z_) with a spectral covanance

Ss(w:z,&). In the special case of a plane wave structure, we have

Ss(- z,') = So(w)e (424)

with an impulsive frequency wave number function In many situations concerning spatially

spread signals, the frequency wave number function occupies a narrowband about kT. The

pnncipal difference in analyzing spatially spread signals involves their representation across

the receiving aperture In the plane wave situation, the statistical representation in terms of a

Karhunen-Loeve expansion is one dimensional, i.e , only one eigenfunction is required in the

representation. In the spatially spread situation, more than one eigenfunction is required For
example, with gross multipath spreading we need at least one eigenfunction per path, while

with local scattering there is an upper bound, which is determined by the area of the array and

extent of the spreading, on the number of eigenfunctions required to represent effectively the

signal across the aperture In most cases of interest the number required is small so that we have

:~I t I < T/2M Oinwot E Sm(n wo)4)m(n•% z.)' z CS2 (4 25a)

s(t'z) = . e
n=-° m=l 0 o T

and

Ss(W z,)= E tm(nwo)4pm(nwo z_) £m(nwoj) (4 25b)

m=1

with

E[sm(nwo)S*k(Qo)] = Xm(nwo) 
6

mk 60n (4 25c)
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Figure 4-2. An example of spatial spreading due to global path structure and local
scattering of thermal structure.
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The structuring of the design of the optimum beam pattern is somewhat more subtle

than that for a single plane wave in that we no longer want simply to direct a beam at a

specific wave number. In our formulation, we generalize this concept by designing a set of

beams, one for each of the M eigenfunctions in the spatial representation of the signal across

the aperture For each of these beams we require that the response due to the ambient noise

be a minimum under the constraint that there is an undistorted response to the eigenfunctions

for all possible signals. Just as we noted earlier, we could alternatively formulate the opti-

mization in terms of a detection theory problem with the resulting analysis leading to the same

spatial structure that follows here

We have

mf q2 (w) G(o zl)d Sn(co z,q) G(w zl4,) dzd" (4 26a)
G i f n

with

JG(w zl4) E sm(C) $m(Cw Z) dz- s(WoI) (4 26b)

m=l

for all M

1=I1

The optimization procedure is quite similar to that which we did earlier so we just indicate

the results. We define

S( Ze2 (4.27a)

[Go(G 0(z_);=:• (4 27b)

LGM°0 Go(°W ZIOM'77
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"• A(wo) =f J •(w! z) Qn(w z,)!_(-:') dzdr (4 27c)

The optimum set of beam patterns are given by

I.Go( 'f A--( 4) _(w z) Qn(w:_z,) dz, e 62 (4 28a)

g =) -I(w)f • !(z) Qn(w-.z,1e-kdz_ dL (4 28b)

The mean square output level due to the signal component is given by

E[ Gm(w:z) S(w z) dzl 2 Xm(W) (4 29a)

while the output due to the nosse components are given in matrix form by

ao(w) E[ IV go(w z) N(wj) d Go(w 4N(w:1) d)J

rr

In summary, the signal components each pass through the filter undistorted, i e., they

are unbiased. These components have a diagonal covariance matrix as given by Eq. 4.29a The

noise components are correlated for each beam and their noise covanance is given by Eq. 4 29b

Various means of combining the signal can be considered according to the critenon imposed.

We consider this further in Section 8.

I
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PART 3 -PROCESSING METHODS

5. LINEAR ARRAYS

The most important aperture is the linear, or line, array It is the simplest structure,
yet the analysis of A yields many significant results which more complicated structures

change only in detail, but not in substance. Much of the analysis of this array parallels that
of temporal processes observed over a finite time duration Often this is a distinct advantage
since only dual results need be developed This can also provo to be somewhat of a liability as
several important aspects of the analysis of array processing do not appear until more
compLcated geometries are introduced. For our purposes we consider conventional and
optimuri array patterns when operating in different types of noise fields Then we consider
some general feature of the processing, such as wave number analysns, superdirectivity, and
null placement where we use the linear array as a discussion vehicle

As introduced in Section 3, the receiving aperture consists of a line of length L,
centered at the origin (for convenience only), and oriented with a tangent vector in the
direction specified by the unit vector a,

fl 1 4, L/2} (5.1)

as illustrated in Figure 5-1.
The beam pattern of the conventional array directed in wave number direction

is found to be (see Eq. 3 9)

g(1.k) = dR s (5.2)
L-L 12 2

When we apply a triangular shading of the form

g(Q)= [- ! ,L 11 <L/2 (53)
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Figure 5-1. Linear array of length L, orientation Aa

we obtain a beam pattern, or wave number response, of the form (see Eq 3 12)

g(-.k.) = smc
2 (k_.iT)_aa (54)

array illustrated in Figure 3-3 We are pnmanly interested in optimum array patterns and
Bothfthese arertand2a( kT) for varrous ntmse fields We contrast these opomum patterns and

their performance w oth t fo r vaio i contrast thes optuatter o ain
performance with those obtained conventionally to determine how the) operate in obtaining

their improved performance We also compare the performance to determine whether the

additional eftort in optional processing is worth while

5.1 LINEAR ARRAYS AND A SINGLE DIRECTIONAL NOISE SOURCE

The simplest nontnvial problem which one can analyze for an optimum processor

is the linear array combatting a directional noise field as shown in Figure 5-2. This problem, in

spite of its apparent simplicity, yields a surprising number of useful results and an insight into

the general aspects of optimum array processing.

We have a directional noise source of power level So(w) located at kn W(/c) an =

S(27/A)an. Consequently, the colored component of the noise is a plane wave

nc(t _z) =no t-'-- (5 5)
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From our earlier analysis in Section 2, the temporal frequency spatial covanance function

of this comiponent is given by

Sntc'wz,i) = Sno (w)e , (5 6)

while the corresponding frequency wave number function is given by

Pn( = Sno(w) 
6
(k-kn) (5 7)

We also assume that a white noise component due to sensor noise is present In light

of our earlier comments regdrding this class of noise process, we have

Sw(.z_) = No 85 2 (z-J) (5.8)

The total noise field is specified by

Sn(w z,0) = Sno()e + N0 +N (za ) (--9)

zz

TARGET "LOCATION"

WAVEFRONTS

NOISE "LOCATION"

WAVEFRONTS

NOISE WAVENUMBER

WAVENUMBER

Figure 5-2. Linear array with directional noise source
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We are interested in determining the, optimum proeessor and its performance for
detecting a signal at kT The first -.,ep in designing this optimal processor is to find the
inverse kernel. For directional sources this is particularly simple because the discrete spatial
frequencies of the noise lead to a separable kernel with a finite number of eigenfunctions
The Karhunen-Loeve integral equation is given by

/2 Jkn'aa(R I 2 
)P Sn (w)e 0(02)0=40(1), I•2I<L/2 (5 10)

-L12

The single non-trivial solution is

4 (w.z) e 1=2 1za,{Z 121 (5 1 la)

X = L Sn (w5) (5 1 lb)
0

The inverse kernel is therefore given by

Qn( z,!) = 16S [2 (z-) - H(- z,_)]

____[ LSn (.) i~nf{)](5.12)

No L Sno(o) + No L

From Eq. 4 1 we have that the aperture pattern, or weighting, is given by

"J L/2 
LSn ((5) J+kn'-aa(Q"1 )-2

'Q22  [ 0 e ~ iTa2

1 d£2 No a L Sn o(w) +No L

LL/ 2 L/2 L- sQ~s LSn,(0) j~~(is](.
d• R 2(01-22 ) _ eJ~Ta£ •

" -L/2 o LSn (M)+No L
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eJkT.aR LSn(w) sinec(knkT).-a en

L L Sno(w) + 1 0  2.

I- I
LS sm)~ c2b k

Similarly, the beam pattern can be found using Eq 4 12 This yields
!3

-g(w.klkT)

sine [k kT).aa L] L Sno(w) nT cLa4sic:kk) -RL2 Sno(,O) + 40 sine [kn'-kT)'-aa h]sn -k-k-n)'Aaa2

(5 14)

L Sno(N sine, [(kniKT) *).a 1T
L Sn (w)N) + -N iJ

The operation of the optimum array can be interpreted as a null placement operation
which depends upon the relative strengths of the directional and white noise If

L Sn(€) (w

No

then

g(o kkT) = sine k[AT) aa (5 15)

This is the conventional beam pattern which has a uniform weighting and is optimal when
only white noise is present. Conversely when

L So10(WO)>I

No

thenr l rLi r L
smc(k-kT)aa-• - sine [(kn-kTaa 7] sin Lk~kneaa ( )2]~k kT) 2. (5 16)

I - sine2 [(_n-kT)"a

82



T.°

"In the direction of noise source, this beam pattern has the response level

g( _knitkT) - 0, (5 17)

that is, a null is placed there Placing this null is done at the expense of increasing the output
noise due to the white noise component Specifically, in tlis situation the white noise is
increased by a factor of approximately

I( - sinc 2 
[(kn-kT)-a--

over the minimum level obtained with a uniformly weighted array If the nose and target are
widely separated, i e,

(kn-_T)'.aa -ý > > 2 (5.18)

the null placement has no effect However, if

2 0, (5 19)

then the white noise response level is increased by a factor of approximately

L ]-
4

I(kn1~)aT

which is a very dramatic increase. Consequently, in de,,igning array weightings with the target
and noise close together, one follows a null placement procedure up to the point that response

due to the white noise becomes dominant.
Figure 5-3 illustrates a situation in which the directional noise is dominant At separa-

tions of 300 the beam pattern resembles that of a uniformly weighted array. At 10° and 30
the pattern has very strong nulls near the noise term Finally, at 1V the null can no longer be

maintained for the white noise has become the dominant consideration due to the large side-
lobes appearing in maintaining the null Note that in the optimum beam pattern response, the
peak does not fall right at the target location when the noise direction is close to that of the
target Effectively, it is displaced over to facilitate placing the null. We shall return to this insubsequent discussions. The performance or noise power output u2s to(W) for this array and
noise field can be found using Eqs 4 17 and 5.12. We have
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o L2 Sn (W)"0 L Sno(-) + No smc2 [-kn1T)'aa

I L

1+ [(l-sinc2 R)
(knP-a--- (5 20)

No 1+L Sno(w)

ii1+ --No

We see that all spatial aspects of the problem are incorporated in the parameter

p sinc (kn-kT)'aa L] (521)

while the strength of the interfering noise appears sn the ratio
L Sno((O)

In Figure 5-4 we have plotted the output noise power a2 (.. kT) versus p relative to a
reference level of No/L

In interpreting this figure we first note that when the target and noise are widely

separated, i.e., p 2! 0

o2 (OlkT) N= (5.22)

while when they are coincident, i.e., p • I

a2 ' + LSno(w) (23N0 (0 (523)
pI

In terms of the performance using optimum array design, the most important parameter is

~ ~, the resolution, that is, how close to the directional noise source a target can be before the
noise power increases significantly. Alternatively, when using "high resolution" methods for
noise field measurements, one wants to know the resolution of these methods

8'
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100
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No/L

L-Sno(w)

L.Sn(w)

No

z 1- 1 o 1.1 .. I

Figure 5-4 Optimum array performance vs Ipi and I - p1 (in unats of N0 /L)
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Since the spatial aspects are incorporated in the parameter p, the resolution is
determined by this parameter. However, the value of p at which the interference becomes

significant is dependent upon the parameter L Sno(w)/No, as stronger interference degrades

the performance faster.

For discussion purposes let us define the value of p which leads to a 3dB performance

loss by P3dB or a 3dB increase above the background white noise. We have

I L Sno(w°)

0 2 (5 24a)

1+ No P2 3dBIj

or

21 1+L Sn (w)NO

P3dB -- S nSo(v) 
(5 24b)

NO

This value ranges from one, as a 3dB reduction never occurs for noises with a level less than

(L/N)J 1
, to l/VI Tfor strong interference Consequently, even for strong interference one

always can obtain a performance with 3dB of the limiting white noise level providing the

spatial geometry yields a p less than I/.vT Equivalently, the resolution can be defined by

sine (k!T-kn)-a*a-- > l/ '" (5.25a)

The response to a directional signal wil be less than 3dB above background outside of this

region. Solving this yields

(k-kn)-aa-L < 1.39 (5 25b)

For broadside geometries

2 fosir LSj 4 2.78 444(52a2 cos 2)- 21(L/) L, (526a)
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or

0, 2 sin- :2922 rad, (5 26b)

where L), is the length of the array in wavelengths. Figure 5-5 illustrates a typical broadside array
configuration for directional noise and target.

SEPARATION
ANGLE

NOISE TARGET
DIRECTION I DIRECTION

LB
L

I

Figure 5-5. Broadside array configuration for directional noise and target

For an array larger than one half a wavelength, or LW > 1/2, we have

.444 25.40
0s -W rad = N (5.27)

This should be the "critical" separation angle for a linear array using "high resolution"
methods in the broadside case. (Note that we assumed no other sources to be present in

the noise field)

As the array is "beamed" off broddside, the effective resolution becomes smaller.

Let us consider the endfire situation as represented in Figure 5-6. Here we have

2.78 .444
cos os - I 2---/ = LW (5.28a)

or 1/2

05-"2 ( -in-g 1 rad (5 28b)
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NOISE DIRECTION

SEPARATION ANGLE

I "TARGET DIRECTION

Figure 5-6. Endfire array configuration for directional noise and target.

For large arrays with LX > I this becomes

0s - .942/V=7, rad = 53.6&/-U)"- (5 29)

Observe that the effective resolution of an array changes from LX-I dependence at broadside

to one of IX-I/2 for an endfire configuration m
Before illustrating the performance of the optimum beam pattern, we discuss the

performance of some suboptimum beam patterns. In this context, we consider two commonly

used array shadings, uniform, or conventional, and triangular; and then we contrast their

performance to that of the optimal array processor just analyzed.
For a target with wave number IT, the conventional or uniformly weighted, linear !.i}•

array has a weighting

Gc(Wi') = eJkTUaQ 11, >£ L (5.30)

As discussed earlier in Section 3, this weighting produces a beam pattern

gc(w:k) = sinc [(k_-kT).a -- = P (531)

The mean square noise output, or the performance for a single directional signal and white

noise environment follows directly from Eq 4 18. We have

2
(wl kT)= Sn (w) sirc

2 Ikn-kT)'4 +-
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No L Sno() M I -*
o sinc2 Ikn-kT)'a L + 1 (532)

L No L 2J

"A triangular shaded linear array directed to a target at wave number kT has a weighting

2 2 "J-jkT'aa£ 
<

"t Wz) = 1- i1e IQ, T 2  
(533) 'K.

"A similar analysis shows that the beam pattern generated is given by

g'fw k) = sinc2 k-kT)a (534) t

while the mean square noise output, or the performance, versus this noise field is

i!~ LO'02 (w[kT,= Sno(a)smc4 
Fkn'iT,.aa L~ l+ 4•

No I LSn • 41
L- No snc4 [(kn'-kT)'.aa +' (5 35)

In Figures 5-7 through 5-9 we have plotted the performance, or noise output for the
optimum, uniform, and triangular weighted arrays for var,, 'is ratios of the directional signal
power to background white noise level We see that the optirium array weighting combines the
desirable features of both the uniform and triangular arrays Its enhanced performance is
particularly significant when the ratio of directional to white background noise is high In
this situation optimum design of the array weighting is worthwhile providing the results are
not unduly sensitive to the model assumptions

The next observation concerns the sidelobe structure of the noise power response
versus kT. When the directional noise is high, i.e., L Sno (o)/No > > 1, then the sidelobe

level of a,2 (wl kT) for a uniformly weighted array goes as [2/(2n+l) ?r]2 , or from 13 dB
Sdown, while &2 (wojkT) for a triangular weighted array goes as [2/(2n+l)r[14

, or from 26

SdB down
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With the optimum array weighting, Eq. 5.20 implies that the maximum sidelobe level of

Oc2(.IkT) goes as

L w S2i 2 )r])-1SNo 2n + )
or

This indicates that the sidelobe level is inversely dependent upon the directional nosse.
For example, in Figure 5-7 the sidelobe level is down approximately 21 dB. Naturally, there
is a premium to pay for this. As we have previously discussed, the optimum array shading is

a null placement operation in the situation of strong directional noise. Unfortunately, this

becomes a very sensitive situation requiring precise knowledge of the direction of the noise

which is typically not available in an experimental situation. This sensitivity to direction is

quite evident when one examines the beam pattern As indicated in Figure 5-3 the beam

pattern has a very high s-delobe structure such that a small amount of error between the actual

noise direction and the null location would lead to a very high respoise to this noise.
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5..2 LINEAR ARRAYS WITH TWO-DIRECTIONAL NOISE SOURCES

The optimum array achieves an enhanced processing gain by effectively displacing

its beam pattern to null the noise If the target is located between two noise sources this pro-

cedure is not viable, for one would have a strong response to the directional source due to

sidelobes on the other side of the beam In these situations, optimum processing can still

improve the array performance although, depending upon the geometry, not as much as in

the single noise source. A particular example of two-directional noise source field, as shsown
in Figure 5-10, introduces important issues in the limited "high resolution" mapping methods

and superdirectivity We consider ihe issue of determining when two noise sources are

tesoluable, or, from an optimum beam pattern viewpoint, we determine if we can create a

beam that can observe a signal located between two noise sources This problem is a very
special case since we can obtain closed-form expressions for a noise field composed of an

arbitrary number of sources Insight, however, is lost in the matrix mampulations which are

necessary. Moreover, this problem is simple enough that we can obtain considerable physical

insight by carrying out a detailed analysis If we assume that the noise sources have the same

temporal spectra, then we have a spectral covariance function of the form

ES Sn°( j) {e-J fl ii-D -J 2"i-P'

2 e + e (536)

Substituting this into the spatial Karhunen-Loeve Eq 3.53, we can obtain a matrix equation

since the kernel is separable, i.e , it contains a finite number of nonzero eigenvalues For a

linear array of length L, oriented with array tangent aa, we obtain the eigenvalues and

eigenfunctions

Sno(W)
A, =L (I + p~lkI 2)) (5.37a)

2

=() _ 1(£)+ I2(2) ,- £ L/2 (5.37b)

(2[1 + P(kl-k2 )l) 2

Sr (W)

22 L L i (I -p I -k2 )) (5.37c)

,-2£(2)L] (5 3 7d )
S(2[ 1 - p(kI-k2)])1/2
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NOISE SOURCE TARGET NOISE SOURCE
NO I NO. 2n~")k

•S "" -T Sno(•)(

!wi ~R RAY

Figure 5-10. Geometry for two directional noise source field.

where

p{.) = sinc (k-A,) (5.37e)

)= e , 4i L/2 (5 370

We observe two features characteristic of the eigenvalues and eigenfunctions of a

directional noise field. The eigenfunctions consist of a linear combination of the functions

e i while the eigenvalues are determined by how similar these functions are across the
aperture. In this example, if the signals are orthogonal, i.e., p(k 2-k ) = 0, then the eigenvalues

are equal and reflect the noise power of I She(w) from the individual directions. If they are

very similar, i.e., P(k 2-kI) -I, then there is one dominant eigenvalue of L Sn (W) which

represents the situation that almost all the noise power originates in a direction which is the
average of the two source locations.
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We can determine the optimum beam pattern and its output noise power using these

expressions and assuming that sensor noise with level No is present. Since the total noise power
is also the term that normalizes the beam pattern we determine it first We have after some
manipulation

NO 0 -r 1h I ( kT)+P(k2.kT))2

L L 2 (I+0[l1+p(i1 -k 2 )]) -T T

SI P - (P(Il'kT) -P(k2"kT))2] -2

2 (1 +P 11 -p(Jil-k2)])

and

g(w:kjl!T)= (2(wOkT))o lP- T) (5.39)

2 1I + f( [ 1 + p -k2 )] (-k ) + P(k-k2 )) (P(kT'ki) +-P('T-k2))

2 1 + P- p(kl-k2))]

where

P = L Sno( )/2No

While complicated, these expressions can be interpreted. Ifp(kl-k 2 ) - 0, then thE beam

pattern has nulls of approximately

p ( hii -k T ) 2 I
I +P[10 -P 2lIl lT) -p 2(l2-4i)]

at each kV i.e., stronger noise sources produce deeper nulls. If we have p(kl-_2) • , the
beam pattern and response resemble that for a single noise source.

In Figures 5-1I and 5-12, we have illustrated these results for an array and noise source
geometry. We can observe that for 20 and 60 separations, the noise power output resembles
that ofa single source. Here P(kl-k 2) - .99 and .94 respectively. At 200 and 600 separations,
the effects of the two noise sources are resolvable with each source producing a response
approximately equal to P. If we examine the conventional beam pattern response in Figures 5-13
and 5-14, for comparison, we find much the same behavior for the peaks; however, the sidelobe
level is very high and could easily be attributed to other sources of a lower power.
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Figure 5-11. Optimum beam pattern noise power output for a two-directional noise
source field.
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Figure 5-12 Optimum beam pattern noise power o.tpli, for a two-directional
noise source field.

99



1000.

LSNo

2

uJt

0 1.

0.0

2- 100. O-2L6

z 0 10 00 30 40 0 60 7

00



100,;.

43

0T=0

S10o. I=-o=0.6
22No

F-

0.

z

-- 10.

0

00

On-

011=10 On-30*

0 00 200 300 400 500 600 700

OT

Figure 5-14. Conventional beam pattern noise power output for a two-directional noise
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The patterns illustrated in Figures 5-15 through 5-18 demonstrate how the output noise

power is minimized. For a 20 separation the beam pattern differs substantially from the conven-

tional one only when P=60 Even a minor reduction of the beam pattern in the noise directions

is worthwhile when the directionial noise level is high Note that a higher sidelobe level is intro-

duced to accomplish this As the separation between the two noise sources increases, all the

beam patterns differ from the conventional beam pattern The pattern for 0=60 has very high

sidelobe in excess of the main lobe for separations of 60 and 200 This behavior contrasts with

that for a single source In that situation the closer the separation, the higher the sidelobe In

this case, the beam pattern must minimize tile effect of two sources, consequently, putting the

target on the skirt of a main lobe is not a viable alternative At wide separations tlhe large side-

lobe disappears, and only the field with a very high noise source places a deep null in the noise

direction In all cases we can see the gross behavior which governs the beam pattern for a

directional noise field We try to place nulls in the direction of the noise sources while not dis-

turbmg the nulls at other noise sources and minimizing the total sidelobe level so as to reduce

the effects of the sensor noise

We can interpret the output noise power in more detail by manipulating Eq 5.38

This also gives some insight into the optimum resolution of the two noise sources We can

express ol(w1kT) as

o2(ok2T) (5.40)

-N [I =((I+p) (p2(,0 l- -T)+p( k2-T)) -•2AII(k2)p(kl-kT)P(k2-kT)]-I

The second component in the brackets represents an increase due to the directional noises,

which is analogous to the term

smnc -k kT) * a S' ) no(w)/No

I + L Sno (o)/No

for the single directional noise case (see Eq. 5 20). It is a quadratic function of the terms

P(!sl-l!,T) and X(k-tT); consequently, the increase in output noise follows elliptic contours

versus these parameters These ellipes have a major axis representing the geometry for maximum

interference and a minor axis where it is a minimum. The major axis is specified by

A- I IT) = P(k 2 "kT) (5.41 a)
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Figure 5-15. Optimum beam patterns for two-directional noise sources at 0=90%;

n-=± 1.00; 1-=90, W-=0°; and P=60.0, 6.0, 0.6.
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Figure 5-18. Optimum beam pattern for two-directional noise sources at 0=90P;,
n=±30'; O=90; 01-1f; and P 60.0, 6.0, and 0.6.
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ar-d the minor axis is

pAlkT) = -P(k2-_iT) (5.41 b)

Since p is an even function ofk, the maximum noise interference occurs when

k-kT =-k2-kT (5.42a)

or

1ki kT = -Lk2-kT) (5.42b)

The first occurs when the noise sources are close together and the target is identical to the

case of a single directional noise source twice the level. In the second, the target is situated

between the two noise sources, which is the geometry that we illustrated earlier.

We define the sources to be resolvable if

o(Wak) > °( (5.43)

In the geometry analyzed previously, this requires

I + P(1 - 13) sinc
2 

(211L.tsin~n) > 2sinc
2 

(OL;•sin~n)

II + Al(1 - sinc(2#rL? sin~ n))] (5.44)

In Figure 5-19 we have plotted the 13 required for resolving tne two sources versus the separa-

tion angle between them for L= 3 For example once they are closer than On 3*, a 13 of at

least 600 is required.
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Figure 5-19. Required SNR for separating two-directional noise sources.

53 WAVE NUMBER ANALYSIS FOR LINEAR ARRAY

Before considering analyses for more noise fields, we examine a frequency wave number
approach to optimal beam pattern design. We have found that the quantity .2(wlkT) specified
the noise power at the beamformer output. From Section 4.2 (Eqs. 4.22a, 4.22b), we minimize

2 d-k 'kf 1a (W 1qL) = I..I-j - -k)P~~)N f G(.&h~2d (5.45a)
0 -[(2.)N

g o (w:k4lkT) = 1 (5.45b)

For linear arrays we can obtain a particularly useful and intuitive approach using wave-number

concepts. This was apparently used first by Woodward [23] and later extended for analyzing IV

superdirective arrays by Francia [241.
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Let us define GgSw:2) to be a weighting across the array and

ka = l'a (5 46)
rel

We have for the beam pattern

L/2 jk~aa2
g(wo:_k = 12 Gkw:R)e - -a dR g2(wo:ka) ,,(547)

where gR is the Fourier transform with respect to the spatial varia4le of G4. Consequently,

only the projection ofka--k-aa is relevant in determining the beam pattern output. This is

illustrated in Figure 5-20.

SEPARATION OF \ • DIRECTION OF ARRAYS2r/L, . Y 1 TA N G EN T

WIDTH OF ,/e -X

BEAMWI DTH

\I
RA, Us 2ur//\ L

MA•XIMUM EXTENT\ X ,

OF P•(Wk) FOR
PROPAGATING
N4OISE PLANES PERPENDICULAR

TO ARRAY

Figure 5-20. Planes of constant response for a linear array with orientation a and length L.
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We now consider the component of the output due to sensor noise With this linear

geometry we can develop a spatial dual to Parseval's theorem and represent it in the wave

number domain We have

SfL/2 2 o dka
Nof IG(woz)l 2

d NO] IG£(to(w )l dQ = No gj(w.ka)l2

(5 48)

Applied to the optimum filter, we obtain

S f Qf dk 1i o kkT)12 n 2 dka

100 0~ ~ go~k~kT)IPn(w~2k) +No j 2 1 (w k)
002 (o:k!,T) =4.1jo (2-), / ff)oNt [ 10 a)1 7

(5.49)

We can determine the output noise power by an integration over the sphere or disk of radius

27r/7% and an integration over ka. The most important consideration is that if we tailor the

sidelobe structure to minimize the first component, we increase the second component due

to the white noise. If we have only sensor noise present, we know flom Section 4 that the

optimum beam pattern is

g(wo:k k-T) = sinc [ _.-kT)'aa"L] (5.50)

This can be represented as indicated m Figure 5-21. The target has a wave number whose

magnitude is 21r/A and the beam pattern generates a main lobe of width 2 x 21r/L.

We first examine what happens when we have a directional noise of level Sn (co) and2 o
wave number kn as illustrated in Figure 5-1. We want to minunize oo(w:kT) which is given

by

02 (w!:kT) = Sno( w)I(:-kn'-)2 + •o•)o(2:ka)12 dka (5.51)

We have a trade-off to make; we want to make the array response as small as possible m the

response direction of the noise source, which can be done by null placement methods, for
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Figre 5-21. Optimum beam pattern with only sensor noise present.

this one would cancel the response in the noise direction with a beam of opposite sign. We
cannot do this, however, in an arbitrary manner. Since array has finite length, we cannot
realize an arbitrary g(w:jk). The sampling theorem says that on the average we can specify one
sampled value per distai.ce of 2sr/L independent of the other samples and still realize the

function with a finite length array. When we specify these points as g (c.n ), we can

determine any intermediate values by the interpolation formula associated with the sampling
theorem, i.e.,

9 :nIT snc i-tT*ja- 2r(5.52)

with

g(WIT-kT_]I)



If we want to place a null in this beam patternl we must adjust the values

gw n- 27) To place a i,ull for a single noise source, two situa'ions can occur When the noise

source is outside the main beam region the null can be placed by adjusting the 9 n W /

nearest it so as to cancel the main beam response Only a modest value of g n-•)is needed,

since the main beam response is quite low Consequently, the added sde lobe response is small

If the noise source is inside the main beam, one must cancel a very large main beam response

value. This requires a large value of the adjacent g(w n) and as a result very laige sidelobes are

introduced. Both of these situations are illustrated in Figure 5-22. The amount of additional

sidelobe response is the value expressed in Eq. 5.51 in terms of the effects background noise

introduced. When noise single source is near the target, the response function appears to be

displaced. The amount of displacement is governed by the ratio of directional to white noise

and the proximity between the target and directional noise source This is the dominant effect

with a single directional noise source
When several directional noise sources are present, the situation becomes more

complicated. In adjusting the coefficients g o:n c-L) we must consider not only the side-

lobe level but also the mutual interference created by placing the various iulls If the sources

are widely separated relative to the resolution of the array, the interference is mii-imal If they

are not, we must determine the exact trade offs using our optimum array dehign procedures

For wave number fields which are not directional, the inituitive appeal of Eq. 5 51

is still useful Basically we attempt to minimize the overlap of the beam pattern and the wave

number function for the noise field without undue effects from sensor noise As we will

subsequently discuss, this minimization of the overlap can often be explo.ted in a manner

unique to spatial processing. Essentially, for propagating signals, the maximum wave number ;

for a given co is co/c, or 2si/X,, and all propagating noise could be eliminated if the sidelobes -,-

were confined to a region

Ika I > 22z/?s

In pnnciple this can be done, however, it requires extremely large sidelobes for ka outs'de

this region. Since the output due to sensor noise still is affected in this region, the response

becomes extremely noisy. A
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Figure 5-22. Null placement effects for optimum beam pattern design using frequency
wave number methods.
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mj ~Ilk,
5A LINEAR ARRAYS IN ISOTROPIC (OR OMNIDIRECTIONAL) NOISE

A common model for ambient noise of deep ,cean noise is the isotropic noise field
distribution discussed in Section 2.2. The spectral covanance function for the model is

Sn(w A) = Sno((w) smnc Az) (5 53)
0

Many beam patterns are designed, and the figures of merit attached to their performance are
discussed in teanm of their effectiveness in combatting this particular noise Unfortunately as
we will see, using this noise field alone can be misleading for it is closely relateJ to super-
directivity and singularity issues it In this section, we briefly discuss how such noise fields
can be incorporated in optimum array design by using results established in communication
theory and electromagnetics. We also apply our frequency-wave-number analysis to discuss
endfire gain in linear arrays. This same analysis extends to the nonuniform aistributions of
noise which we discussed in Section 2.2.

We consider the noise field to be composed of an isotropic and a white noise com-

ponent such that

Sn'V4 = Sri sinc(- 1I ~) + No 6S2(AD (5.54)Sn

The frequency wave number function in three-dimensional space for isotropic noise consists
of a sphere of impulses; however, when one integrates all those parts of the sphere which have

the same wave number projection kaa, a rectangular function of k-a results. Alternatively,
the one-dimensional transform of Eq. 5.54 with respect to the spatial frequency as observed

by the array, i.e., ka, yields the distribution as shown in Figure 5-23.1

For a linear array, the integral equation that specifies the optimum ,.rray weighting
(see Eq. 4.6) is

L/2[ Sno(cii) sinC(cIlt.21I) Go(w•:• 2I kT '2 + No Go(w:2ll-kT)
4L/2

(5.55)

= -•() ,,I£11<L

Pka (:ka) = Sno(w) sine c + N,8(Q)J ej- dk,

'Note that the hnearitray allows introducing ie tensor noise in terms of an effective i•are nutbhera
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Figure 5-23. Distribution of noise power versus ka, the effective wave number across

the array.

where P(w) is a normalizing constant for unity gain at k=_kT. The solution of this integral

equation can be expressed in terms of the spatial eigenvalues and eigenfunctions of the homo-

geneous integral equation associated with the temporal frequency-spatial covariance of the

isotropic noise. For this particular kernel, the prolate spheriodal wave functions specify the

basis for the solutions. When one maps the parameters of the prolate spheroidal wave functions

to the array design problem considered here, there are 2L- + I significant elgenvalues. As an

indication of this behavior, Figure 5-24 illustrates the six most significant eigenvalues as a

function of array length L. For 2L. > I the eigenfunctions resemble sinusoids where the

spatial frequency separations isI
L

If we denote the eigenvalues as 'n(w) and the eigenfunctions as 
4

n(w:Q), the optimum

array beam pattern is, using Eqs. 4.12d and 4.15,

g o (w:kl kT) = o0 (wkT).

-[ 1 L/2 4:12 eL2kaa£1" O l [L/2 'n(w:2 2 )e d2 2/(Yn((,)+ N

-•/ 2 €-L/2

(5.56a)
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Figure 5-24. 'y,(co) vs LA:m -1,2,... 6 for isotropic noise (from Ref. 3)
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whera the performance as encompassed by the output noise power is

L/2 eI CjT*I5Qn(w:2)dk 2

2 IkT) = L/2 n) + N (5 56b)

When the array length LX exceeds unity, the eigenfunctions approach a smusoid
harmonically related at a fundamental 2w/L. Switching to a complex exponential represen-
tation for the sines and cosines we then have

2 " 2sin c 2nlr) L r fl

0(n-• kT 6•No n[ + L)Pkao'J kTa)]

(5.57)

- +( If2 1'" I-T'al <2irX

Lo 2, N o( € '

N ( + 4 s:oo-) IkT-gal - 2xr/, (endfire)

L IkT al beyond region of propagating targets

This represents the approximate performance of both the conventional and the optimum
arrays. It is only in regions where the isotropic noise is dominant that the optimum array can
achieve somewhat superior performance by displacing the main lobe into a region with

k--a. > ! , where only the white noise is present. This is an example of how a superdirective

beam is formed.
In Figure 5-25 we have illustrated the performance found by solving Eq. 5.55. We have

also indicated the results indicated by the approach discussed above for L7, > 1. The arrays show
a gradual decrease noise power output at endfire. This decrease can be interpreted as putting
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Figure 5-25. Output noise for a linear array (L?,=3) operating in Isotropic plus sensor noise.
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the array wave number response in a region where tlse frequency wave number spectrum of the
noise is lower The conventional array performs almost exactly as predicted by the large array
approximation, while the optimum array displays an improved performance for the high
isotropic noise case. This can be attributed to superdirective effects.

The presence of high endfire gains has been observed by several people, while the dis-
cussion by Vanderkulk [25] is best known, the first observation was by Schellkenoff [26] r

A report by Schulteiss 1 27] is notable because it has several sets of figures Its equivalent in
signal design for temporal signals apparently has not been discussed.

If we examine Figures 5-26 and 5-27, the optimum beam patterns for operating in an
isotropic noise environment, we observe that when the target is broadside the beam pattern has
a conventional shape. In the case of very high isotropic noise, the beam is slightly displaced into
a region of nonpropagating or sensor noise only. Again we observe that optimum processing
offers substa-tial improvement when one can place part of the beam pattern in a wave number
region where there is a lower noie level and yet satisfy the constraint of having a unity respnnse

in the target direction.
We can interpret high endfire gain for isotropic noise dir.ctly in terms of three-dimensional

frequency wave number concepts. This interpretation also predicts the occurrence of similar
behavior for other types of noise fields. In Figure 5-28 we have indicated the frequency ,wave
number functiin of isotropic noise as distributed on a sphere of radius 2sr/x. According to our
intuitive wave number analysis, there is a strip of width 2 X 22r/L representing the main lobe of
tse beam in the target direction. For broadside beams ths strip intersects a ring-shaped region
whose approximate area is X 2ir x 2X as indicated by target location on Fig-ire 5-28 At

endfire the region has a shape of a cap whose area ii 7r 21 2 as indicated by location B.

imtersected area of the endfire region is half that of the broadside region. The gain can be
additionally enhanced by displacing the lobes outside the sphere and increasing its gain. If the
noise does not have the uniform distribution of isotropic noise, the intersected regions nmust be

weighted appropriately. For example, if there is a high noise component normal to the array, the
endfire performance will be enhanced. Such would be the case for a vertical array in a noist field
such as that shown in Figure 2-8. Conversely, the high layer noise of Figure 2-4 would reduce
endfire effects of the array performance. Some typical results for noise fields with nonuniform
distributions are indicated in Figures 5-29 through 5-32.
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Figure 5-26 Beam pattern for a linear array operating in isotropic noise field,

broadside target location
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Figure 5-27. Optimum beam pattern for a linear array operating in isotropic noise. p
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F~gure 5-29. Output noise power for a 3), vertical linear array in low-surface noise
environment (see Figure 2-4) 12
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5,b SUPERDIRECTIVE LINEAR ARRAYS

Superdirective arrays have a long and rather interesting history The work on them has

been motivated by the apparent ability to 3clieve very small beamwidths with finite length *

apertures. One of the first to recognize their existence and properties was Schelkunoff [26]

in his algebraic theory of linear array's They have also been extensively discussed in electro-

magnetics, where the problems inherent in their realization have been investigated Several

syiithesis procedures are related to superdirective arrays, in particular those of Pritchard [28]

and some aspects of Dolph-Tchebychev arrays They are also intimately related to singular detec-

tion theory which in itself has seen a long period of development [3] Quantitative results are

hard to come by, however, the general principles about superdirectivity and its relation to singular

detection can be understood quite intuitively
For purposes of illustration we use a linear array, although there exist examples where

other types of arrays, e g., circular, where similar approaches have been used If we have an array

of length L oniented with an array tangent •a, its frequency wave number response, in principle,

extends to all spatial frequencies If one considers the response to plane wave signals in a medium

with finite propagation velocity, then the incident wave numbers, or spatial frequencies, arew2wr
himted in magnitude to Ikl < = - The response outside this range is theoretically arbitrary.c
For a superdirective array, the wave-number response in this region is manipulated such that

within the range Ikl <-L- it has a very narrow beamwidtk

We have pointed out the difficulty with this in a practical system, the narrow beamwidths

are created by generating extremely large sidelobes in the region Ikl > "T. If one investigates the

beam pattern, or wave number response, by plotting it versus 0, these sidelobes never appear.

Sensor noise, however, does not have a propagating structure but has an equivalent wideband

wave number spectrum which can extend well beyond the limit on propagating limit of IkI < 27r/?,

Consequently, it enters through in these large sidelobes as we can see from the second term in

Eq 5.51.
We can indicate some superdirective effects for a half wave length array by designing a beam

which has half the width of a conventional pattern We use the procedure of Section 5.2 and let

No"* 0, or P oo. This yields

g (co-k4 ) !~= C [finckleT~ k- ' ]

- inc [- aaT -a") 'a + sine ..-kT + aa aa ,.

(5 58a)
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where C= =5.33(58b

2 No
and a~~T W c- 0O (5 58c)

The beam pattern is indicated in Figure 5-33. The bea -I pattern is indeed narrower, but large

sidelobes are created. These are outside the region of propagating noise, so that tney would not
be observed in a normal plot of response versus angle When it is plotted versus the wave number

however, they are very evident.I

NON PROPAGATING~~~~~~~~NOISE REGIONSUEORlVEEAPAEN
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The superdirective array is much more sensitive to sensor noise %

The optimum design of superdirective arrays is not, surpnsingly, closely related to the

optimum processing methods that we have been considering Also, this illustrates the connection

between superdirectivity and problems :n singular detection theory An ideal array would have

a unity response.
t

5 (ka - Ta), Ikal 4 2fr/f -

(559)

gs(w ka),, Ikal > 2ir/X

For an array of length L we want the transform of this response to have the form

finite, 121 < L/2

GR(w R) (5.60)
(0, 21 > L/2

We have

G JkT 2 "jkaR dka
G =(w:2) = a + f gs(w.ka) e - (561)

Ikal > 2vfls 27r

or

GR(w:2) = e "kTa' + Gk(I:C) * (2) - -sinc 1- Il

L 2 X

This yields

- L/2 sinc [- (R1 1 e -JkTa"

2 JL/2 X - 2

L/2 < R1 < L/2 (5.62)

This is the integral equation which we would obtain if we posed the optimum detection prob-

lem of detecting a plane wave signal in the presence of isotropic noise alone, with no white noise

present Such in integral equation is a Fredholm equation of the first kind, and the general

solution has singularity functions appearing at the end points of the observation interval for

'As noted earier this value ofunity nea, the target drection must yield a nonzero firnte measure when integrated m a
region "near"It
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temporal processes or at the aperture extremities for spatial processes One .an specify a forma!
solution in terms of the solutions of the homogeneous equation-the prolate sphoidial wave
functions; however the resulting series does not converge, in general, to well-defined functions

The essential points to be made regarding superdirective arrays are

I. They are primarily a mathematical issue since the effects of inter-element coupling

and the sensitive adjustments required cannot be controlled precisely enough to implement
heiem practically

2. Their sensitivity is closely coupled to singular detection and is of interest as a

limiting situation when the white noise in a system becomes small

3. They are only effective across narrow frequenLy bands since the aperture phasing is

coupled to the wavelength specification.

4 Their response should be determined for all wave numbers, not simply as a function

of the incident bearing angle

6. OPTIMUM ARRAY PROCESSING FOR DIRECTIONAL NOISE FIELDS

Noise fields that consist of a finite number of directional sources plus a white component
can be analy.ed exactly. The final results require knowledge of sincil(k), the conventional wave
number response of the array, the correlation, if any, among the noise sources, and a matnx
inversion Since we have observed in Section 3.6 that directional noise field has a finite number
of nonzero eigenvalues, we should be able to specify the solution in terms of a set on
linear equations

The noise field has the temporal frequency spatial covariance function

N N jkz

Sn(w:z- 2E E e Sij(w) e + No 06 (z4), (6.1)
i=l j=1

where SU(w) represents the correlation among the various directional components Note that if
we require the directional noise to form a homogeneous field, then homogeneity requires that

plane waves with different wave numbers be uncorrelated. For convenience in the subsequent
discussion, we define [S((4)] to be the matrix whose elements are Sj(co). In addition, we define

the propagation vector eikn.' to be
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.e ji l-z
- ~ , (6.2)

where the k are the wave numbers for the various noise components. Consequently, we can

express Eq. 6.2 as

Sn(w:z:D = e [S(-)] e + No 0  (Z-0_ (6.3)

To determine the wave number response and the output power, we must find the inverse
kernel across the aperture 12. We appeal to a functional analog of the following matrix
inverions lemma

[uTv + A] -1 = A -AlT [I + vAluTr'I v A-1,

where A is N X N, andu and v are M X N. We identify A as No 2 (z--), while u and v are
-jkr lz -b, " t

replaced by, respectsvely, t -= -and [S(w)]_e -. The spaces of concern are 12 X 11 and
12 X RN. We have for the inverse kernel

Qn(O'-zS-•) -L0 SQ(ZQ

"SJ-kn-lt [I+A Sc~ ' 1-1 [S(.)] e"JknI-

N0  No (6.4)

where we define

"I sincS2(kl-k 2) sinc2(k l-_ 3 )

[PS2] = sincq2(k 2-kl) 1 (6.5)

sincni(k3 -kIl)

.I .
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(The term [pn] is identical to the term [simcS2(8]) used in Eq 3 57c ) This matrix reflects the
mutual interference of the various noise sources as observed across the aperture

The output noise power as a function of the target duection follows from Eq. 4 17 as

2 T A A-Pt(kT) I A [S(w)M ] [I()] -1

N0 OlT) N NO -N + Pal 2 P- LT) ,

(6 6a)

where

sinc12(L-i)]

BW sincn(LA2 ) (6 6b)

Lsinc1 (-k-N)J

This can be simplified considerably; the final expression is

o
2
(j I AT) = ! (6.7a)

where
A12[S(w)]

[fiV] (6 7b)No

This is the same form we had for the single noise source case. The limiting performance, or
lowest noise level, is given by No/An, while any increase in the noise output level enters in the
form of

2 NO/An2a (- IkT) = - , (6 8a)where

a Tr ( PAT) 8 T M (N + [13 IPnW') (6.8b)

132



For a conventional wave vector response, we obtain N

N, r
2 = ! I + Tr [1]_eQkT) _QTrkT (6.9)

We can observe that the mutual interference is introduced via the term [p12] m the optimum
beam pattern output, whereas it is not included in the conventional processing

The optimum beam pattern follows directly from Eq. 6.4 using Eq 4 16 This yields

• ~ ~~~~~~smcS2(t-k-kT Tr IN EN• N(1,T) -TNI)[N+[][P -I

•:• ~ g(ca:k NU-T) 1-T [ N k ) T IT [IN + [ P] [ P S2]-I (6 10) Ylc

We have a conventional beam pattern and a term which introduces nulls in the direction ofthe various noise components.
We can completely analyze the optimum array performance for a source of arbitrary

geometry operating in a directional noise field. Since we have introduced most of the intuitive
concepts in our discussion of linear arrays, particularly null placement, we need not pursue
this further. The major remaining issue is the effect of various array geometries

7. ARRAY GEOMETRIES IN HIGHER DIMENSIONS

The analysis of arrays with geometries that are more complex than linear generally
becomes quite complicated. Since our primary consideration is the development of the major
concepts that are involved in optimal array processing techniques, we have focused our attention
upon linear arrays. The more tedious mathematical issues did not appear, yet we were able to
analyze substantive examples illustrating the issues under consideration. In many respects, this
is deceptively simple, in that added dimensions introduce unique problems and possibilities
which have no direct temporal equivalent. ThIs does not imply, however, that the introduction
of more complex geometries changes the essential concepts we have developed Higher
dimensional problems are sufficiently complicated such that any insights that can be drawn
from simpler problems are valuable

In a discussion of optimum processing with more general array geometnes, we cannot

pursue as extensive an analysis as we did with linear arrays. There are simply too many
combinations of array geometries and noise fields which rapidly reach a point of diminishing
"return once a few representative examples have been introduced We discuss some of the more
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common geometries and then concentrate upon some representative examples of optimal

processing and the limitations imposed upon it by various noise fields

To keep issues in perspective we point out that the only noise fields which can

reasonably be analyzed are directional ones, and even these become quite complex for any

more than two sources Exact analysis of fields with noise sources distributed in spatial wave

number is impossible even for such a simple structure as isotropic noise The more complex

geometries do not change these results. We have already done a complete analysis for the

directional noise field and the only new issue is computing the sincn(k) function The exact

analysis for distributed noise sources remains intractable, and we must still resort to approxi-

mate and/or asymptotic analysis

In the analysis of linear arrays we found that the important wave number was kaa-the

component of the wave number as projected upon the array tangent We are similarly concerned

here with projections on a set of lines for crossed arrays,, a -'i -e for planar arrays. Just as for

linear arrays, these projected wave numbers can be quit ,calculating wave number

responses

When dealing with white noise and frequency wave number issues one must be careful As

before, we regard this class of noise as nonpropagating in origin and independent from point to

point on the array This leads to a wave number representation which is flat where the array is

capable of filtering and no definition for the entire wave number space is implied If the completely •

flat response for all wave number space is assumed, we are led to infinite noise power propagating

through our spatial filters. This is not a very satisfactory model of a real array Essentially, we want

the Parseval relation

N0  J Igloow k12  N0  ~ c z)12 dz

In general this is not true, and only for those special cases in which we confine our integration to

projected wave number components can we write relations of this form.

There are three situations of general interest in arrays with spatial extent of more than one

direction , the target and any directional noise sources are near broadside, the target is broadside

and significant components of the noise field propagate across the array, both the target and noise

propagate across the array. Each introduces its particular set of considerations. Several typical

cases are illustrated in Figure 7-1.
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a) PLANAR ARRAY TARGET

WITH BROADSIDE
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NOISE

b) DISC ARRAY
WITH ENOFIRE W -
NOISE AND • OS
BROADSIDE TARGET TARGET

TARGET

WITH ENDFI RE n ',• -,.,
NOISE AND
TARGET NOISE

-TARGETý

Figure 7-1. Typical array, target and noise geometries.

7.1 PLANAR ARRAYS

Planar arrays are the simplest two-dimensional array structures Our analysis of planar

arrays is essentially the same as for linear arrays Figure 7-2 illustrates the array geometry under

consideration, for convenience, we orient the array with a unit normal vector a and tangent

vectors a- and a2 (these are not necessarily orthogonal).
We can specify the array weighting pattern as a two-dimensional function

Ll L

G(Qw:z_)=G(w. 1al, 2 a 2), 1211 < -•-,221 < 2 (7.1)

We can attach all the common weightings or shadings as we did with the linear array

for each coordinate £I and 22, or we can specify more complex shadings with a function

which need not factor. We consider some examples. For a target atkTaI = t T2 2 = 0 with

conventional shading, G(w ki,Q2 ) = l/LIL 2 , or
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fL 1I2 fL 2""(wk) J-'ka C I1+-='-22 dQId£2

-L 1/2 -L2 /2

I L2S
=sinc(a.& -~ si4.g-2  (7.2)

Figure 7-2. L x L2 planar array with orientation aI x R2 aa%.

As we have seen, since(k) is important in our discussion of directional noise analyses and

its form is sketched in Figure 7-3. Figure 7-4 is the beam pattern when the array response is

presented in dimensionless units. If we examine the array pattern in Figure 7-3, we see that it has
a resolution of 2"(2ir/L 1 ) in the al coordinate direction and 2"(2ir/L 2 ) in the a 2 directior The

resolution cell has an area (27r/L!) X (2wr/L2 ) in wave number space. The distribution of this area

is determined by the orientation vectors aI and A2
A triangular shading in each direction produces a beam pattern of the form

gu = sin4al - sinc
2 

(ka2 !. (7.3)

We can also split the array such that

gOwt) IF, [(tkAk)*] -F1 [-(k+kk)a,]}

F2 [(kI- a2 ,- F2 [-(k_+Ak,.a 2 ]}. (7.4)

where F 1 and F 2 are the beam patterns on the array halves
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Figure 7-4. Beam pattern planar array sinc (2wr PI) sinc (2w 1)2)-
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This beam pattern typically has a saddle point structure near the origin in wave number

space where the cross defining the critical point locus of the saddle is along the vectors aI and

a2. We see that in this situation the generation of single beam is not a desirable processing method

We need to generate two beam outputs, one for each coordinate direction in order to obtain our-U

desired response for nulting at a particular point er

The analysis for optimal processing in the presence of directional noise is substantially the

same as for a linear array. The performance may be taken directly from Eq 6.8 as

02 TINo + (LIL2/No) Sno(MJ)S(WIT) 2 (7.5) "0 c kT L--2 1 +(L1L2/No) Sno (w) (I -AncS2(kT-kn)) •

The beam pattern also follows directly from Eq. 6.10

sincS2(k-kT)-smcS2(kT-kn) sC(-n) (7.6)
fg(w k I _T) = T 2(76

1 - sinc:2 (kTkn

In Figures 7-5 through 7-10 we indicate the performance for some typical noise

geometries We observe the same effects that entered in our study of linear arrays Note the high

sidelobe levels in the conventional versus the opt;mum processing The results when two direc-

tional sources are in the noise field are parallel to those for linear arrays.

For analyzing isotropic noise we encounter the same type of difficulties as in the linear

case if we pursue an rxact analysis. We can, however, pursue as approximate analysis. First, we

need to find the asymptotic distribution of the eigenvalues for the isotropic noise kernel expanded

over the aperture. The eigenfunctions will be spatial sinusoids. Asymptotically, the eigenvalues

approach a skewed version of the two-dimensional wave number transform as the array extent

increases. (We assume that the array is located in the (zx, Zy) plane ) We have from our previous

results

= IL Sno(w) sine 2v lZal ai--a dzxdzy

(S]n Mk 2 Ma• 1V < 2

0 ikal > X•

(7.7)
za = Zxax + Zyay ka = kxax + kyay
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DIRECTIONAL NOISE SOURCE

00 = 1 0 = 480
On =O 0. k No

-n W

10" 350:2OO 0. W 0" 3400

30' w330'
3O~

40' 3200
32W ý 40*

50' 310W

31 1 5w

aw05OO 3W0

z7o* 1ew2

2W 30°
70 298°2w o

90° 270r
270" w0

2W isv l

250" 110"

120W 24

240W 120"

130O, 20O
2W0 130'

140 I9

1140

210" w 00 150"

2W0 170O 19W' 160'
19i" , 170O

•--• Figure 7-5. Contours (in dB) of noise power Oo2(w:kT) relative to No/LI L2 for an endfire

directional noise source optimum processing 0•

140



DIRECTIONAL NOISE SOURCE

On, =90o Sno(C) A

kT(O, 0)

340

10 31-
20 35oo01

2W 10 1°0 1 30

lSO~ i71"

110 0 0

* 131

130"0(

130"

141W

260" 27" 19" 10"WP

141W

12W

240' 24.



DIRECTIONAL NOISE SOURCE

3500' 0 A
20*45 350*- 480340

33 70

Mr 2 (B)3520

5W 0031

W 14 3

220

2100 10

1900 1270170

100*26(

46*10

11W M.

14W 2242

220* 140

'50 21W



-777 .r-7s-77?.. f .777-7 - 777 '717:77

DIRECTIONAL NOISE SOURCE0n = go, Sn A92

On =45o N 0

ONO

350:

130 60314
200 3 0 ° 5° 30

5W03 310°

50°,

60* 6 310

23' 70 10' 15. 60

70' 0 3 290,
290 for a

90° 70
270i90

lowt 260
260' 100*

110' 210
250, 1101

10 12 0 240'
240' 120,

13W 2300

230° 130°

140' 220°4
220' 1061 140°

150° 1A 10.

210 6 120 150W

2000 170' 1901. 1W0
190 , , 170'
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S Computing the noise output as we go from broadside to endfire is more difficult for there is not

a monotonic increase as is the case in the linear arrays If L1 > I and L2 I > I the eigenfunctions

will approach spatial sinusoids with an eigenfunction distribution given by the above two dimen-

sional wave number function An approximation performance is

*o(w I kT)=L (No÷ a (78)

No X2  an(0

( 1+ Io S (/ 21r

LIL2 [ J'TI 2 2

LIL2

This diverges as kT approaches endfire or 27r/A, so it is hard to predict the endfire performance

It is easy to observe that our approximation can be refined with two considerations If we inte-

grate over the finite beamwidth, we average over the integrable singu arity in the wave number

function In addition, at endfire half of the beam response is in the white noise region which has a

lower noise level Consequently, we have that the output noise increases until we are beyond

Itk'k'anj > 21r - 2"v -- 27rt 1•2•2

X 2L X 2LX/

at which point it levels off and then begins to decrease The optimum processing can increase

these effects somewhat by appropriate showing of the beam Some representative performances

are illustrated in Figures 7-11 and 7-12.

One can introduce various noise field geometries representing surface, bottom or layer

noise. The results of our discussion on noise representation indicate how the two dimensional

wave number function can be found, from which the approximate performance can be

determined Alternatively, we can pursue an analý sis in three dimensional wave number

space with the noise field distributed on a sphere as we did in our discussion for linear arrays.

We are led to the same results in either method.
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Figure 7-12. Planar array output noise level for an isotropic noise field.
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7.2 CROSSED ARRAYS

The importance of crossed arrays lies in their capabilities of providing spatial information,

or resolution, along two coordinates with fewer sensors than a planar array While in a planar array

the number of sensors increases as Ll L2 of the crossed array sensors increases as L + L2 In most,

but not all, cases crossed arrays perform virtually as well as their planar counterparts when their

outputs are processed correctly. This is very significant in reducing computational demands

One of the most important facets of the analysis of crossed arrays is their tutorial value

With a minimum of complexity, they introduce several significant concepts in the processing of

array data. In particular, the importance of frequency wave number concepts as a means of

obtaining approximate expressions for the system performance For our analysis we consider two

noise fields - directional and isotropic.

We consider an array structure as illustrated in Figure 7-13. The class of beam patterns

which we can generate is given by

Ll/2 jka£ L2/2 jk 2£

g(W I) G I (w:£1 )e- - d21 + / G 2 (w:R2 )e -2- dt2
I /2 -L2/2

= 1(w.hkal)+ g2 (-:k_- 2) (7.9)

121

Figure 7-13. Crossed array-legs of length L 1 ,L2 , oriented in dtrectioa a Ia2, crossed at
center of legs.
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This is a much more restrictive form than that which we had for the planar array We can-
not generate resolution cells, i e , regions where there is a main beam concentration and

outside of which the beam is approximately zero With a crossed array we can generate only ,

combinations of resolution strips In Figures 7-14 and 7-15 we have plotted the conventional g

beam pattern for a typical crossed array configuration This beam pattern is given by

LI 12 L2]
L(+•LLIT) = L 2 sinc k-kT)'al + L sinc (k-kT)'a 2  1 0

(7 10)4.

Conventional beamforming can introduce ambiguity effects if a noise source appeared in one of

the "sidelobe strips," one should weigh the use of the other line of the cross to a degree greater

than that of the conventional weighting of L,/LI+L 2 Optimal processing achieves a substantial

4 amount of its improved performance and sidelobe suppression by introducing this implicitly

rather than by using esoteric beam patterns

We consider the analysis of a directional noise source of level Sno(w). From our

previous example, we can specify the performance and optimal beam pattern by inspection
For the performance we have

An2Sno(w) 2
2 A 1 I+ No (I -2 (lt)) - LT

sic 1WIT (7 11)
l+ N J

where

An =LI + L2
LIA LLL2LL2)

sinS(k= L sinc La + L sinc(a 2
TF - T2 L1+L2  l~- 2/

This is plotted in Figures 7-16 through 7-18 At first inspection, it may appear that the above

does not perform as well as a simple linear array when the noise appears in one of the sidelobe

strips However, a comparison of this situation with the corresponding linear array yields
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(2( (j-Lk-s)(=Tk Li L

with

T na= 0

for the crossed array, and

L L
LlSno )

1÷ No

(7.12b)

for the linear array It is straightforward to demonstrate that the increase in noise output for

NL 0 0is given by

Li No sinc ([k-T--n-I1 :i +L 2 )2/(L+L 2)2 (73

1. s1n (wk~l)Ljn.a ( 1W(.1)
0

NoN

15 6 ?.
(72b



The largest increase occurs when the noise appears in a null of the crossed array length with,
i e., it is the main beam of one length and the null of the other,

L2

)2L

1+2-L1

L2- (7.14)
I + 1+I

for No 0.
It is useful to demonstrate how the array obtains its increased performance. The optimum

beam pattern is computed straightforward, and the next result is

AS2 Sno(w)

NosincI2(k 'kT) - A ~z Sn o(W ) ssnc•(j~k-k• T) sinc(k --kn)

1+ N0g(wo'kgIkT)= ~nW
AS2 Sno(WO)

No 2
I- A62 sinmc (_kn-T) (7.15)

1 + N Sno(W)

157



We consider a situation (kn-kT)'a2- 0 and (]n-kT)al , > 7r The resulting beam pattern

generated is illustrated in Figure 7-19 It simply has a null in the crossed array beam pattern

In the special case of a dominant directional noise source and L1 =L, we have

(LI+L2)Sno(t)

N0No 
!

sincS2 ( -kl-kn) 2

and

-=Go(W:hLT) 4 (sinc(k-.kT)- 1 sinc(k-kn)) (7.16)

This places a null at k=kn while maintaining unity response in the target direction A natural

question which arises is why doesn't the array simply ignore that section along which there

is no resolvability, i.e , assign a weighting of zero along that cross If this were done, we

would have an array output noise of approximately NoiL while if the optimum response is

used, the output noise is 2 dB less, or 4/3 No/2 1 I. Both weightings suppress the lighly

directional source by nulling it, however, in the optimum array a smaller amount of white

noise enters through its reduced sidelobe level Only if the noise field has a strip of sources with

0 does the beam pattern approach that of a linear array A representative beam

pattern for a noise field approximating this class is illustrated in Figure 7-20 Note that theýe is

effectively no resolution along ky direction

For crossed arrays in directional noise fields the optimum patterns place nulls at the

wave numbers of the directional noise sources, while simultaneously minimizing the mean

square amplitude of sidelobes While the conventional array is designed independent of the noise

field, the optimum patterns indirate an intuitively appealing design to exploit the structure of

the noise fields encountered These optimum patterns are not too complicated and it is only

when the noise and targets are close together that they become complicated, introducing the

features we encountered earlier i the discussion of linear arrays
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The design of crossed arrays for isotropic noise cannot be pursued analytically without
considerable amount of mathematical detail The crossed geometry still reduces to the prolate
spheroidal wave functions that we encountered in linear arrays We can, however, pursue an
approximate analysis which encompasses the basic attributes of the processing

To analyze the performance of crossed arrays in noise fields which have a smoothly
varying wave number function forlkl > 2wr/X, we must isolate a set of temporal random processes
which characterize the array outputs We can do this quite easily using wave number, epts
Each leg of the array forms a set of orthogonal beam outputs Xm(w) and Yn(w) at intervals ot
2ir/Ln i wave number space, as illustrated in Figure 7-21 For convemence, we subsequently
assume the array crosses are perpendicular The spectra of each of the outputs Xm(w) and Yn(w)
is given approximately by

I (i 91) 2r d No
Sxm(W) 1tPn(W• --L a I kia2)dk22 +

wm k")- +L-'7 (7.17a)

2i \dk N•- i-
2- k INo

Syn(w)=- Pn(. klal,+ 2 2 - - (717b,2J \ L 2  /21r L2

with

[Iml] < LI/X = LI/

[Inll < L2 /A =L 2 /X

P .2 =0
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Figure 7-21. Wave number analysis for crossed array performance.

where Pn(w') is the two-dimensional wavenumber function Consequently, we have that

there are 2(LIx + L2 .) random processes The random processes xm,(t) and xm2 (t) are un-

correlated since the beams are orthogonal; however, xn(t) and ym(t) are correlated since

the beams overlap at the crossing point We have for their cross spectral density

1 r 2sr 2l8'
g~~(W)= I• P :m L"al In L-•a (7 18)

xnym LlL2 kmLI ln 2

so that as the array length L1 and L2 increase, the effect of the correlation decreases

Figure 7-21 Wave number filters for crossed array performance
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27r 21r
If a target is located at or near the wave number location m 2 a, + n - J2, the array

2 2
forms a beam which has a combination of these random processes in its output The class
of beams which are formed is, approximately, given by

01 1 sine +~ +jL 2 sinc
9(-•kLkT)= csI+ PL2  (7 19)

where & and 3 are adjusted to weight each array so as to minimize total noise output of the
beanm We have

2
uo(wlkT)

a°Ll •2 ( IlL2 P 2 2LIL2o

\.LI+3L2/ Sxm(w)+ Ll+jL 2  Syn(')+ (w LjLI+3L 2 )2 Sxmyn(°))

(7.20)

Optimizing a and 3 yields

cdL1  Sxn(w) SxmYn( )

aLI+3L2  Sxm(w) + Syn(co) -
2 Sxmyn(W) (7.21a)

IlL2  Sxn (W) - SxmYn(W)

aL I +PL 2  Sx(W) +Syn(w) 2
SxY(W) (7 21b)

This yields a performance of

Sx ()S, Sm2n(w))2 Sxm()Syn( - x2yna o- - Sxm(w) + Syn(w) - 2 SxnYmy(W) (7.22)

where the various spectra are cqmputed via Eq. 7.17 and 7 18
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As an example, we consider the special case of three-dimensional isotropic noise of

Example 2.2a with a crossed array. We have

55

S N/(w)L, I+I N " I

+ <L7J (7 23a)

\LI21

( Snn(w)(+.NO)/, 2  II

(pNo/L
2 •, • 

(7 23b)

Syj(w) o2 Sn ) 2arL 1L2  (~~ 2)I

0, otherwise

Substituting this into Equation 7 22 we obtain for the special case ofLL with P3» I

2 No 1100
(w T)- - (P) /X (7.24)

where

I,

02N

k LT L 2,

SL1  L2  /
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The improvement o,er a simple linear array is

i lio

We have assumed that Li/ > 1, otherwise, we would have need to consider superdirective

effects immediately. In approximating the smoothness of P(ca k) we must have

X IT

Li

or

Po

If this is not satisfied, then the improvement becomes 1/2. Finally if

(x 2 ,

\LI) \L 2 / 2L1

ther we should be careful of superdirective effects. In summary, Figure 7-22 represents an example
2v2 2

of a superdirective beam pattern when kT = 0, 0 , while plots for Oo(wIIWT) may be found in
Figure 7-23. Observe that in Figure 7-23 at T= 0 it is easier to place beam pattern volume outside

Ik] > 2rf/A than it is at OT = 450, therefore the endfire affects are more significant
We can also use the above analysis to derive approximate expressions for the spatial

eigenvalues and eigenfurnctions of the crossed array when operating in a noise field whose

frequency wave number function vanes slowly over the resolution width maximum (L/,)- 
1

of the array. The results are indiative of what is obtained in the analysis of higher dimensional

geomnetnes. We emphasize that our analysis is approximate. It combines a classical temporal

analysis with the features of the crossed array. To determine the eigenvalues and eigenfunctions

we observe that at the frequency w the random variables xi(w) and yj(w) lead to a spectral

covanance matrix of the form
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[ IxNj
0 SxN(wO) 0 ~ ~ (

0 S, N (W) s~~w
[S( )] - - - -(725)

S y.M(wJ) 0

0 'SYM(w)

where N= LI/X, M = L2/X and the elements Sxi(w) are computed as indicated in our previous

discussion The generation of a set of random variables which have a diagonal covariance matrix
is a classical orthogonahzation problem in matrix algebra [31. One needs to solve for the elgen-

values and eigenvectors of the homogeneous equation

1[[S(w)]- Xk(w) I] 4)k(,) = 0 (7.26)
• . k=2(N+M+I)•

The eigenvalues of the process at frequency w are given by the set {^ktw, I k__i }
The spatial eigenfunctions can be expressed in terms of the elements of the eigenvectors. If
we separate them such that the first 2N + I components are associated with the x or LI leg,
while the remaining 2M + 1 are with the y or L2 leg, we have

xCk, -N('")

Ck, N(t)

(7 27a)

yCk, -M(wo)

C, M(w)
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and the eigenfunction Ok(w z) associated with ?4k(w) is

{ c -•N Ck lX()(2r/Ll)Qal'z {=a £< 12

=. k, i
~k~w~) =(7 27b)

M
a E Cý (w) e - ýý= I22ll<L2/2}

i=-M L ~e(fI~42 Z a

where a is a normalization constant Note that the basic approach is to isolate a set of
random variables from which we could reconstruct the observed signal and then to apply an

orthogonalization procedure.
We have assumed that our array is crossed at the center of each leg This simplified

many of our results since there was no relative phasing between the center of each leg We
now briefly consider the situation in which the center is separated. We assume a geometry as
illustrated sn Figure 7-24. The class of beam patterns which can be generated is given by

jgw~) g 1 o k '1 )e l + ~ -R
)gl(o:_-al) e + 92(t'-a2) e (7 28a)

where

Ll/ 2 G jklQ1
gfl( co:kl) = " 1 2 G l( cj Q1) e d£1 (7 28b)

11/2

g 2(t:-k2 ) = f G2 (w R1 e 2 2 dR2  (7.28c)
"L2/2

"with, respectively, Gl(w l1) and G 2 (w 2) as the weighting patterns for the first and second

array legs.
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In our analysis we are concerned with the interference relationship between the two

legs. We have

jg(_ 2k) = IgL( .1 _ 12 + 1g2(-ka j2)2

1e-k(Rl'_R2) * •+ 2Re ["1(2 ) k'al) g2 (co k'a2 (7.29)

For example, a conventional beam pattern with only a constant magnitude weighting and a

phasing directed to k=0, i e , kT=O, has a power response of r.

0(-:Mk)l 2 =a2sinc2 "al -2 +P
2

sinc
2 

Ik-a2 2 a

S2o cos (k'(R1 -R2 )) sinc ial 2 sinc "kg2 2 (730)

We see that the term

cos[k_'(_R1 - 2 )]

•Z

a22

POSITION OF CENTERS. R1 , R2
TANGENT VECTORS: al, 2LENGTHS: L, L2

Figure 7-24 Geometry for two linear arrays with arbitrary centering
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LX-A

can alternatively cause the responses to interfer either constructively or destructively The crossed

array with separated centers produces a larger array which leads to the narrower beam pattern ridges

Since the array is not filled, i e , continuously connected, large sidelobes result giving the indicated

interference pattern This is a general result when one is dealing with sparse arrays A typical

situation is sketched in Figure 7-25 We can observe the general effects for the two types of noise .

fields that we have considered For directional noises the relevant term is the wave number differ-

ence between the target and the noise kT - kn If this difference vector falls within one of the

strips but not near the origin, we have essentially the same problem as discussed earlier The noise

and target cannot be distinguished along that particular strip, i e, it is within a sidelobe strip so

that the strip of the second resolves the two Our analysis would be substantially the same as before

If, however, the difference vector is near the origin, we may be able to use the array separation to

our advantage to achieve an enhanced resolution compared to that of the centered arrays, if the

difference vector falls at a minimum of the interference pattern the separation can be significant

This effect is clearly most pronounced when the noise difference vector is parallel to the array

center separation vector One still has all the difficulties of ambiguous effects as we shall discuss

for clustered arrays This effec. can not be used, however, if the two vectors are orthogonal, as

indicated in Figure 7-2t)

The results for noise spectra with smooth frequency wave number functions are straight-

forward if there is no separation we have a power spectrum response

2 12*
1g1 (Iw kal)20 + 1g2 (w kL.2)2 + 2Re [gl(w ka l )g*2 (w t'2 2 )]

while if there is a separation we have

+ g2( k A 2 + 2Rec 12 gl(w k-al)g2 (w ka

If the space factor eik(RIR2) reduces the overlap volume of the last term on the right,

then there is a smaller amount of noise propagating through the array. This is generally the

case Physically, with the greater sepaiation, the noise field decorrelates Some typical

optimum beam pattern responses for separated center arrays are shown in Figures 7-27 and

7-28 These should be compared to the original centered array results (See Figures 7-16

and 7-17.)

'?"%
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Figure 7-25. Conventional beam pattern for a crossed array with separated centers.
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for an offset center crossed array with endfire directional noise at On =45*
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7.3 CIRCULAR ARRAYS

The analysis of circular arrays is similar in principle to that of linear arrays, however,,
the transcendental functions appropriate for their analysis are not familiar to many Conse-
quently, the salient features of circular array properties are often clouded due to the appearance

of these functions Before discussing how the response patterns can be controlled to cc obat
various noise fields, we examine tlse class of beam patterns that can be generated by typi-il
circular array structures

Ring Arrays

SA ring array is the simplest circular geometry, as indicated in Figure 7-29 For this array
we have

g( fi k) G(c 0) eJkRar(!) Rd0

0

Oj21 krR cos(O-.0k)
= G(J ' (k) e Rd,. (7 31a)

0

where

kr = (L'al)2 + (k'a2)2 (7.3 1b)

Ok = tan' (kal, k'a2) (7.31 c)

We expand G(ce 0), the aperture weighting. in order to identify the structure of the beam

pattern

jno
G((. 0) = G,(e)e (7 32a)

where

7 • r -jnO

G w gn(w.0) e dO (7 32b)
0

Subshituting this into Eq 7 31 a for g(w k) yields
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27r j(krR cos(
4
O-k) + nO)

g(w.t) = Gn(w)RJ dO
n=-.(

00 in(Ok - -'r If j(krR smi' + nO')

=R Gn(w) e (7V.33

n=-°"i=2zwR e G(,n( -2Jn(krR, (733)

We see, for example, that for a uniform weighting of (27sR)R we have

g(W.) = Jo(krR),

which for a ring array plays a role similar to the sinc (ka -) for linear arrays The functions

Jo(x) and smnc(x) are sketched in Figure 7-30. We point out that Jo(x) has its first zero at
2 4 and a first sidelobe level of -.402 occumng at 3.8, as compared to ir, and -.212 at 4 7
for sinc(x)

The effects of the higher order terms can be quite complex since they must be added
in phase The weighting for each is Jn(krR), and the first five members of the series are
indicated in Figure 7-31. To dllstrate the effects of the various terms we consider the n and
-n terms in !he senes. We have

2 IR(Gn(O)e in(Ok-Ir/2) Jn(kR) + Gn(w)e-jn(O~k+ir/2)J-n(krR)

21rR Jn(krR) 2Re[Gn()eJ(7(3k4/2)])

This produces a sinusoidal pattern versus Ok- The total )eam pattern consists of a complex
linear combination of these terms The weightings have an amplitude dependence upon Y"R
determined by the term

Jn(krR)

Consequently, the important terms with'r. !he region of propagating signals are determined
by the magnitude of Jn(2srR/X), which decreases for increasing n, the order of the Bessei
function.

177



, L

zzz

a R
N

zx ~

Figure 7-29. Ring array of radius R, normal orientation an,

x* x= ka 1 sinc(x)

75

.50

25

0 .6. 8 10

x
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One can intuitively see how superdirective effects can be produced at a specific krT

by choosing the coefficients needed to produce an impulssve function versus k' i e , one can

ignore the dependence upon the wave number magnitude. We have

mt Jn~kT

21rRJn(krR)e 
2 G(c) = e (7 35a)

so that

N I n(krR)) e -jn(k"0kT) ý7 35b)

which for kr =krT approximates sn impulse at As the value of kr is changed the exact

phasing necessary for tCe construction of the impulse altered which leads to extremely large

sidelobe levels. If the white noise level is finite or there are signals propagating with a differ-
f• ent wave number magnitude, this can introduce a sesrious degradation ir performance. An

illustration of these effects is given in Figure 7-32 We observe, consequently, that for any

particular kr, we can achieve a superdirective beam pattern, however, we encounter a sensitiv-
• ity problem iii doing so In any tinite element array, we cannot achieve the impulsive beam

pattern; however, the basic arguments are similar. In reference 13, a detailed analysis of

circular arrays with a finite number of elements haE been done. Consideration was given toSthe effects of sensitivity

There are several useful relations dealing with integral representations, recurrences

and series expansions for Bessel functions Reference I I is one of the readily available
sources which has tabulated many of them We can illustrate the use of several of them by

considering an example where we phase the array to a wave number with fiie kT.U

For a signal with wave number k4 we need a phasing given by

1 ".1..! I JrRcs00•

-Re =-e G(-),, (7.36)

where

krT = M(kT'al)+ (T 'a2)
2  1/2
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Substituting this into Eq 7 31 yields

g(W.k) = J R[(_-T) R, (7 37a)
-- r

fto
where

(k = [((k-!T).al)
2 + ((k-kT).a 2)

2 ] 1/2 (7 37b)

i e, we simply steer the array to sT as expected For example, when both the target and
wave number are in the same plane as the array with wave number magnitude of 27r/X, as
illustrated in Figure 7-1 b, we have

gF(w k) = Jo 0 -7"" sin-2O (7 38)

where AO is the separation angle between the target wave number and h Naturally, there is
no change as the target moves around at edge because of the circular symmetry

If we pursue the Fourier analysis, we arrive at the same result in a somewhat more
circuitous manner The analysis is, however, illustrative of the use of the relations needed

in the analysis of more complex problems We have

! f2 e "JkrTRCs("kT) -jnO
Gn(W) = • 2 r- R e dOi

0

I -ein0kT 2

-2rR e n(krTR) (7 39)

Substituting this into Eq. 7 33 yields

jn(kk-Tk)
g(W k) = e Jn(krTR) Jn(krR) (740)

n=.-

One now uses the relation [29, Eq 9.1 791

Jn(W)e = Jn+m(u) Jm(v)eJ
m '

5
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Figure 7-33. Relation of terms in equation 7 40

where the terms W,uv, and a,6 are geometrically related as indicated in Figure 7-33. This yielels

g(w k-) = Jo k--k-T)rR] (741)

As pointed out above, this approach is not as direct, however, it does indicate the usefulness

of one of the product theorems for Bessel functions. Generally, often complicated expressions
can be simplified considerably by using these relationships or, more important, there is a more
straightforward approach to the analysis

We now consider the effects of staving a circular array whose geometry is illustrated in
Figure 7-34 We assume that the staving operation multiplies the shading G(&) 0) by a gatmg
function Gst(O) as illustrated in Figure 7-35, where N is the number of staves, Os is their angular
width, and i• is the origin The Fourier series associated with this function is given by

"-J~o N- I O¢s/2 !. T9•

Gst(n) = e E -j(2vmn/N) f s e!m0 dO27r
m=0 f- s/2

0, n * Nk

(742)

e-Jnoo n s
S Nbw sinc - ,-, n Nk
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The effect of the staving can be represented as a gating of the original pattern, i.e-.

Gs (w 0) = GT(0) G(co 0) (7.43) .

ST1

Consequently, the coefficients {Gst(n)j and {G(w n) , which represent the Fourier series of

the shading on the circle, must be convolved to obtain the final set of coefficients for the array

If the weighting factor has significant harmonics greater than , then the coefficients are ahased 6A

Generally this is not the case, the only effect of the staving is to cause the Fourier coefficients

to be repeated at intervals of N The net beam pattern is then (assume 00 = 0)

g(cw:k) = NowR G(ow:m+n)eJ(m+nN) Jm+nN(krR)
n/n

0 owm---

"sin-c•N (7.44)

which introduces the same type of grating structure that we observe for clustered hnear arrays

with a periodic repetition interval If a highly directional source can propagate through one of

the ambiguous sidelobes we will experience deterioration in performance If not, we would not

be bothered except for the increase in white noise due to the increased array area. The simplest

example of these effects can be demonstrated when the array is conventionally steered. In this

case, we have

IK
GR n0 (745)

the resulting pattern is given by

g(w k)= einN(ok+sr/
2
)JnN(kR) sinc (7.46)

Exact statements regarding the number of significant sidelobes are difficult to make. The

question becomes, for those values of n where sinc(nNO s /2) is significant, i e , n < 2ir/4 s N,

how many functions JnN(krR) have maximum values in the wave number regi', of interest

This question requires a rather lengthy examination )f the behavior of Bessel functions.

In examining the design of optimum beam patterns for circular arrays we confine our

detailed analysis to directional noise fields and to thost which are isotropic in the plane

containing the array The general concepts illustrated within the context of linear arrays

are still applicable and are quite useful in analyzing more comphcated noise field structures.
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As with crossed arrays, we assume that there is sensor noise presept This noise has a

correlation given by

E[w(t 0l)w(r.02)] = N0 6(t-r)6( 1 -02 ) = N0 6(t-r)Si(20-0 2 ) (7.47)

Note that the noise output generated by such a process is given by

a (w)=N Ig(w 0)1 RdO (7 48)
w 0

For a conventionally steered array, this yields

2 2ff krTR cos(0-OT) 2

o (w) = NO RdO =No/27rR = N0)AS2 17.49)
w 21rR

Note that we cannot model the noise with a two-dimensional wlhtte noise spectrum

of the form

Elw(t z)w( )= N064-7)6(14) .50a)

or

Pw(w L) = NO (7 50b)

The reason for this is that although the circular array has resolution capabilities in all directions,

its wave number response decays asymptotically only as Jk1-1 
When integrated across the entire

two-dimensional wave vector domain, this decay is not sufficiently fast in the noise power output

of the array so that any nonzero aperture weighting is necessanly infinite

In Section 6 we analyzed optimum beam pattern design for directional noise field

with an arbitrary number of components and arrays of a general structure We can easily

specialize these results for circular arrays. For example, for a single noise source we have
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21rRSn(cj)

No
[o([-k-R-TrIB) 2srpSn(w 0J ([krkn] rR) Jo([L-kn] rR)

g(w h LT) = 
2IRSn(4) (7 51) "
2rRS() (kknlrR)

2irRSn(W) (1+ 
•

211+ N -1 Jo lt•

O(wk kT) = r 2 srRSn(W) (752)NO No

Since

o 2

and
x2

sinc2(x) - I- " Ixl<< 1,

a circular array has a 3/2 high resolution unproxement over a linear array of comparable
dimensions operating at broadside In Figures 7-36 and 7-37 typical noise power outputs for a
circular array for directional noise fields incident normally and tangentially are indicated

For the circular array we can analyze the optimum processor for a noise field which
has a two dimensional isotropic structure. Our representation of two-dimensional noise

precesses in Section 2 and some useful relations among Bessel functions are the key factors
which produce a relatively simple result for the optimum beam pattern and its noise
power output From Section 2, Eq. 2 70, we have

Sn(W IIl)= f po(wo k)Jo(krZI)krdkr = fo(w Al) (7.53)

127r)' 0 ro 2 1r

187

0 4 ,.0-



1000V
OPT PROC

SCONV PROC
DIRECTIONAL NOISE FIELD

On =0 Sn (w) 2vR

0n =0 No 36

kz kT
10

' 0) SIDE VIEW

"/ /kr

100 ~TO TOVIEW

STOP V I EW

10

x/

6 2o* 46o Of ec 9o*

OT

Figure 7-36. Output noise for a ring array with broadside directional noise.
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for the structure of an isotropic two dimensional noise field From Section 4, Eq 4 9,
we want to solve the integral equation

Sn(w: 1z- 1 i ) G(w'4)dt + NoG(w z) = X(w)e zCS2, (754)

where )(w) is chosen such that the beam pattern has unity response in the target direction. For

the circular array geometry this becomes

f 
2  Sn(: 12R si (I012) )G(W42) Rd02 + NOG(w* 1)

= k(c)e ,, Rcs(-T 0<01 <27 (7 55)

The spatial elgenfunctions for this array and noise field are ol the form e-Jn . This suggests usmg
an eigenfunction approach, which for this case is simply a Fourier series expansion of G(w•0, e.,
we expand G( ¢0) in the form

G(o(. 0) Gn(ejnO (7.56) L
n-.o

For the left hand side of Equation 7.55 we have

:12R sin (!G()eJn-2 Rdc 2 + No Gn(0 je

= Gn(-)[ Sn : 12R sin e±-nRdo + N ejnO (757)

For the right hand side of Eq 7 55 we use the Bessel function expansion from Ref 25

IThMis is the continuous analog of Gaarder's observation for the :sgenvectors for discrete arrays 113/
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eiZ COS= Jn(Z)CJn(O+ir/ 2
) (7.58)

From this we obtain
3(e-jkTrR Cos(o-'OT)=() - jni(7r/2-OT) in¢•l l

? X(W) Jn(kTrR)e e (759)

We match Fourier coefficients to solve for Gn(u), or

Jn(kTrR) ein(1'/ 2"T)

n ]- f Sn( :12R sin \j-e-.n'RdO + NO

where )(w) is a normalization factor. The term sn the denominator can be simplified
appreciably by use of the wave number representation of Eq. 7.53. Substituting for

Sn ((J: 12R sin I ) yields

SSn(caJ: 12R sin [ e"JnO RdO = Po(Cw:kr)Jo(kr2R sin(±2) krRe-inO de ___

(7.61)

Again one of the Bessel function relationships is useful. We have

jO°Z sin 'e d= J2(Z); (762)

therefore,

f Sn(w 2R sin tejnORdO = po(w:kr)j (krR)krdkr (7 63)
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In order to compute the output noise we need from Eq 4 15

"rfl -kTrR cos(-'.•)G(:)d 1 -I
"o2 (w Ik-T) =1r e r G(w:0)Rdo (7.64)

Using the Founer expansion ofG(&o:o) and Eq 7.58 for the exponential we derive

j (kTR)

o2(w kT) 2 n or

o R 2

= Po(w:kr)J n(krR)krdkr +

N0 /2iwR

02(. kT)= 2 (7.65b)

n 2(krR)krdkr +I

2s 1 p(3k)~ /
A number of special cases can be considered at this point. For example, for a target normal to

array, kTr is zero so we have

2(,.kT) = 2-L (WoR2 po(w:kr)J2(krR)krdkr + (766)

Se., only the term n=0 is significant in the output noise power. For the case of ring noise, from

Eq 2 79, we have

21r
p°(w:kr) = So(-)uo(krko)

This produces an output power of

0
2

(W.N/2R (767)

i) (k 0rR)+

-NoRS(O) J2(koR)+ 1
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Most p(Aw:kr) of interest are zero for kr > 2ar/X. Since Jn(x) - 0 for x < 27r/), with n
increasing, there are a finite number of terms which are significant This is analogous to linear
arrays when there were L/l + I significant eigenvalues Unfortunately, one must resort to
numerical procedures to evaluate the expressions, just as in the linear arraN .ahC Some typical
situations are indicated in Figures 7-38 and 7-39 As the final topic in our analysis of circular
array structures, we bnefly consider some aspects of disc arrays The geometry of a disc array
is the same as a circular, or ring, array except that the entire area is filled The beam pattern of

a conventionally steered disc array can easily be found

I A(k-kT)'-zgc(w'k-kT) fle dz--

f -R-21r j(k--kTrrCsO(-OT) 
R

ijRfJ0 J0- 2Te rd Jo((k-&T)r)rdr

4_(•l((i-kT)r R) 2
2 r

\k-kT) R )(7.68)
-r

This is often termed an "Airy Disc" from its use in Fourier optics (301. In Figure 7-40 we have
compared the beam patterns of linear, circular, and disc arrays with the same length and/or
diameters. We observe that (2J1 I(x)/X) 2 

has its first zero at x = 3.8 and a first sidelobe Ihvel of
0.0044 at x = 5.2. The behavior near the origin is

2 I () ---• lxl2 
(7.69)

Consequently, its resolution is approximately the same as a ring array.
In analyzing the response to various noise fields we observe that directional fields are

again a special case, as those results shown in Section 6, and that analytic results for isotropic
fields are not tractable with the results taking the form of Bessel function series.

193

- -- - - - - - - -



OPT PROC

- -- CONV PROC

0-z /

0 20 400 600 800 900
0
T

Figure 7-38. Optimum and conventional array noise power output relative to No/2?rR for

isotropic noise with a nng array.
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Figure 7-39. Optimum and conventional array noise power output relative to No/2vtR for
ring noise with a ring array.
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8. ARRAY PROCESSING SYSTEMS

In many situations one must consider systems composed of arrays, i e., an array of

arrays. There are many practical reasons that lead one to this situation. For example, one often

has a discrete set of sensors the apertures of which have a finite set of geometnes, so that each

sensor may have directional properties in itself. If the individual wave number responses are

more or less omnidirectional for frequencies of interest and their separations are large, then

the theory of discrete arrays is probably most appropnate. Typicilly, however, the sensors are

not omnidirectional, the separations are modest, and we need to consider the system as a whole

The physical motivations for using clusters of arrays are that a complete coverage is

either too expensive or impossible. Further economical motivation is that one may be forced

simply by high data rates to "cluster" arrays because the sensor outputs can not be processed

individually, particularly if teal-time processing is important

Usually clustered array systems have a suboptimum performance so it is important to

understand when the losses enter and to compare their performance to an optimized system In

this section we consider the analysis of sue, systems and consider some representative examples.

Figure 8-1 fllustiates the general structure of the systems being considered.

ARRAY

BEAM OUTPUT# #

ARRAYBEAM
. . . .Y 2 lt l C

BEAM OUTUTUT 02

B OUTPUT
r(t:z) N

N E

R
ARRAY

BEAM OUTPUT #N

Figure 8-1. Clustered array structures.

Several possibilities and combinations exist in the '.,esign of these systems One can

conventionally phase, or beamform, with or without shad,ng each subarray, or one can generate

an optimum beam as we have done throughout the text. In addition, one can perform direct de-

lay and sum beamforming, or one can introduce the theory of an optimal discrete array to do
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the beam-combining Consequently, there are four combinations of processing that we
consider We have tabulated and commented upon these combinations in the following table

Processing combination for clustered arrays

Combinations of Beams

Individual Beams Conventional Combination Optimum Combination

Conventional Conventional array theory of General area of application of
Arrays sonar texts discrete array theory

Optimum Possible application for non- Least amount of performance
Arrays plane (distributed) wave targets loss for these suboptimum

systems

There are also two considerations which commonly simplify the details of the analysis con-
siderably First, each of the individual arrays has the same pattern, except for a phase offset due
to the displacement of their centers, in the secona drrays are regularly spaced

Since we have considered the synthesis of individual arrays, we concentrate upon the
problem of combining them. 'Ve define the beam pattmr of each array for a target of kT, as
Gi(c:k IkT). The output of each arnay is given by

dYi(w) W Gi(w _klkT) dR (w.k) + dWi(w) (8.1)

Consequently, the spectral noise covariance matrix for the beams is

Sn.(wo) = i.(wik kT)Pn(owk)Gj *(:k:_ IIT) d No6i Gi(j :z2J

(2,r)N 2
(8.2)

We constrain the individual array responses to satisfy

G1(w:kTkT) = I ,.

i.e., we have incorporated the steering delay in the individual arrays. There is no loss of
generality here since the combiner can assign an arbitrary weighting to compensate for this.

The beam combiner calculates a weighted sum of the individual array outputs In suboptimum
processing, the weights are preassigned and do not directly depend upon the noise spectral covariance
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matrix of the individual array outputs. In opamum processing, these weights are optimized to achieve
the minimum noise output power From discrete array theory this is given by [30, 311

E(w IkT] t [Sn(W)-'I jkTzl

EwltkT]t [Sn(w)]-I E(-IkT)

where

E[wlkT] = [e-J-Tzl , e-JTZn]"t

and z, is the location of the center of the Nth array
In either the optimum or conventional case

N
dYo(w) = C•(w) dYi(w), (8.4a)

where we impose the constraint of umty response in the target direction,

N N
Ci(,) Gi(-:-E'kT) Ci(c) =I (8.4b)

The beam pattern for the total system is

M
g(w.Q'QT) = E Ci(W) gl(w gh- T) (8.5)

1=1

and the performance can be expressed as the inverse of the noise output power, or

I2( kT) = (E N Ci(co) Sni(w) Cj (c) (86)

m- j=!
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For the optimum array configuration this becomes

a0(2 jkT)= (ErlkTjt [Sn(c)]-' E[.okT] (87)

which is identical to that derived for discrete element arrays This is as far as one can go with

a general formulation for an arbitrary (.ollection of beams

To proceed a step further, we require that the individual arrays have a common aperture
weighting except for a linear phasing for its arising from their location, or

91(W'LAT~) = gcom(w~ &lT)e J(t-T)-Zi (88)

Here we have assumed that each array is centered at z, and there exists the possibility of only
steering the individual beams, i.e., the weighting is constant but one adds a linear phase shift to
account for each array location

Snij(_) ff gcom(_ !51kT)l2 P(w ^ hTc) 'kT)(,-zj) dkJJ (2ir)N

+ No fj IG(w.z)I dz (8.9a)
com

N j kk

9°(cJA" kT) = g9cm(w -IIkT) 61 Ci() e -- T)
i1l

= g(( klkT) gcomb(k.- (8.9b)

where 12com is the aperture of the common array

N jk"zI

Gcomb(k) Ci(.°) e - - (8 9c)
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Consequently, we find that the final beam pattern can be expressed as a product of the beam
pattern for the individual arrays and a beam factor for the combination of them as distributed
in space. Note that the Ci(we) can be designed either conventionally or in an optimum fashion.

The performance is expressed in basically the same form as above with somewhat minor
simplifications.

N N
o2=(w JkT) C (W)Sn .(w) (w) (8.10)

i1= j=l

2 2 dk2fL c 2 2

Igcom(-.kkT)j JGcomb(L-k) - =, JGcom(-k z) dz
(2wr)N

When the combination beam is designed in an optimum manner, we obtain

2(01k) =_.N N-jikTzi i jkTz ) "1

= (ET(wjkT) [Sn(w)]- E(.IkT))-' (8.11)

Essentially, we are examining the covariance for a noise field which has passed through the wave-
number filter g(w:k fkT). There is an extensive literature on the theory of optimum discrete
arrays. Sometimes the relative spacing between the clusters is so small that the continuous
array theory is a more convenient analysis tool as, for example, when the individual array
responses are omnidirectional and their separations quite close In other cases the spacing is

wide and the continuous theory is no longer appropriate for analyzing the design and operation
of the beam combiner Essentially, one should say that the element spacing is sparse

The analysis of sparse arrays is quite difficult and the dominant concern is the sidelobe
structure of the beam. There are two special cases, however, which can be analyzed.
Fortunately, they are of practical interest and are indicative of the general results encountered.
In the first of these we have the clusters spaced at regular intervals in a lattice, whereas in the
second the individual arrays are spaced at regular intervals on rings. The analysis of lattice
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transforms has been studied extensively in spectrographic methods for the analysis of crystal

structures. In the single dimensioned distributions, the theory of sampled data systems and

Z transform methods are quite useful. The analysis of ring structures is more cLmplex and it

is easy to become mixed in a maze of the Bessel functions which appear. Fortunately, there A-

are some reasonable simple examplks which indicate the basic theory involved

A complete discussion of lattice array would take us too far astray at this point In

particular, a large literature exists dealing with optimum processing for discrete arrays. Most

of it does not convey the intuitive insight that we have obtained for continuous arrays We

consider line clusters which have a distribution of the form and which are conventionally

combined

We have assumed an even number of elements The modification for an odd number

with a cluster located at the origin is straightforward. Substituting into Equation 8.9c yields

N/2 - I j(k'•a)[(2n+l)/2] L

gcomb(k)= F Cn(w) e (8.12)

n=-N/2

This is in a form that is useful for defining a term which puts our analysis in the context of

Z transforms. One identifies Z(k) as

Z(k_) = eJ -'-aL (8 13)
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Figure 8-2. Clustered line array.

This leads to the expression

N-1

Gcomb(k) = eik-a(Nl/2)L C N(()e - CnaL
n= 2

N-I
n= Zk)(N-I/2) Z C  N M) Z(lt) (8.14)F, n-j

Tables of these have been extenssvely tabulated m conjunction with the use in digital filtering
methods. It is also the basic formulation used by Schelkunoff in his studies of linear arrays.

First we note that Z repeats itself as a function of k We have

Z(q) = Z(k + n L- %) Z - -+n L a) (8.15)
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Consequently, if L/2X is greater than unity then the beam pattern repeats itself within the

region of Iki < 2-- or where propagating noise appears, i e., there is an ambituity in the

beam pattern. We examine the consequences of this in subsequent discussions. Basically, the

array is undersampled at this point.

In order to make our discussion more concrete we consider an example; let

Cn()- (8 16)

We then have

N-I

Gcomb(k) = (Z(k))-(N-l/2)Z N -1 Z(k)n

n=0

Z(k)__N- 112) 1 - Z(k)N I Z(k)N2-l )-N/2

N I -Z(k) N Z(_I/2-Z•)- I/2  
(8.17)

= sinc:k'a) N"--/sinc [-k"a 1]

This is the space factor for a linear array weighting of the individual outputs, as illustrated
2wr

in Figure8-3. The main lobe of the pattern array factor has a width of - -2, i.e., it is still determined
NL'

by the total arsay length. However, there exists the possibility of ambiguous effects due to
the sidelobe at 2w/L. If this is outside 2?r/X, then only white noise enters through this side lobe
To consider the effect in more detail, let the individual arrays be phased conventionally and

assume that their length is

L
LO L -(8.18)
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In Figure 8-4 we have sketched the product G(w.k.I kT) Gcomb(k-_kT) which assumes the

target is broadside such that k T-ga = 0. We make a comparison for this case N = 4 There

are 2k-I side lobes of level

since'- n = 1 . ±k

One consequently obtains a main lobe of width 2(ir/NL) The effect of the sparse sampling

is to introduce these side lobes If the background noise is over regions which are

significant, then one has a performance aeterioration due t-) the sparse sampling. For example,

a directional noise sourse could enter through one of them. If the noise is uniform, or

LX < 1/2 with small elements, then the array is ot sparse and one does not observe a reduction
in performance.

While we have chosen a uniform weigh~ting of the individual array outputs, one can

use any type of weighting desired. Tables of Z transforms are useful in this respect. For the

more common shadings one observes a spreading of the width 2(v/NL) and a reduction of

the minor side lobe levels between the beams.

The modification for the situation in which each array is designed optimally is straight-

forward. One still observes a modulation of the main beam by the space factor However, the

more important issue concerns combining the beams optimally, which is the basic issue in

the design of discrete arrays.

The design of optimum discrete sparsely spaced discete arrays is, in gcr'V'.1l, bust

done by computational methods as analytical results are qute tedious to obtain. These is,

however, one example which does not involve a great deal of tedium and illustrates some

of the issues which appear in the design of sparse arrays. As one might expect, the noise
field consists of directional signal plus a white component. We assume that the noise has a

wave number kn and a level Sn (co) and that the white component has level No. From

Equation 8.2 we have

i2 p k 'e-i-) dk fL/2

t .... ~ NIGcom(W:2kT)
2 d

2 jkn(Zi-zi) N 2 dka
+ Sno()Gcom(O._klkn)I e-ii =N 0oJIGcom(:kaikT) (---0 (8.19)
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We define

a=of 2dk 
'

= N f IGcomi(W klkT 2 d7 (8 20a)

P = Sno(W) I Gcom(W knIT)l (8 20b)

the matrix whose elements are defined above can be represented as•t
[S] = ON +

3  
(8.21)

-Cjkn'zNJ _e•n'Z !N

The inverse of the matrix can be found using the inversion formula of Section 4

k "zl 6nz I

[S]-1 !N P (8.22)

Le Anl*Nj jkn*-

The optimum noise power output then becomes

u2(w ''T 
N j(ktTkn)* " 1-"-

0 RET)= 1 -+PN/' N) (8.23)

We observe that the space factor for a uniformly weighted summing of the i.'dividual array
output enters the calculations. The same comments regarding closed form expressions for
lattice space arrays and the use of Z transform theory enter here.

If we consider the same linear regularly spaced distribution discussed above with
individual arrays of extent Lo, we have

No
ol = No (8 24a)2Lo
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n ()(8 24b)

sNc sin 2/ -

1 = kT-2n (8.242)Gcomb(n)y iNt L n ll nt r h

+1LO-)Nw) sinc2(Ak.qa14-

2 LON No-.' 2/k sinc2(A Ls

itprom nce Lt wvenumbekinervas o

0(WIkT) No I+__________ (co)______(At-%

s~r~2~4k5 ~) (8.24d)

where

=kT- n (8.24e)

This is very similar to the results that we obtained for a continuous array of length LON. In

Equation 8.24 we need only identify the directional noise level as 0 and the array length as
LON. The important term is the space factor which is identified as p. This causes deterioration
in the performance at wave number intervals of

Q!T]-n)d j 7  (825)

* i.e., when the target and noise are separated by wave number components of 27r/L as projected
upon the array. At these points, the performance becomes

a L sLnc2ON K (8.26)
0 (J itT)= 140 ino c ) K

for

LO n=±l,. .,±•-l
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Consequently, if LX > 1, spatial aliasing enters and degrades the performance The only way

to combat this is for the individual arrays to have enough resolution to eliminate these effects.

In Figure 8-5, we have sketched the performance for some representative values of the

parameters.

This concludes our discussion on clustered arrays The principle effects are space

factors and spatial aliasing If these effects are not significant, then clustering represents a

possible processing method which has distinct computational advantages, especially for

optimum processing. We have confined our attention to linear combinations. While the
clustering is suboptimum for spatially coherent signals, it may become a superior method if

the signals are not plane waves. Here quadratic operations upon the clusters may become

j{ desirable.

PREFORMED BEAMS

One of the most time consuming aspects of processing array data for changing
noise fields is in calculating and forming the spatial, or beamformimg, operations One method

of reducing the amount of computation is to preform the beams and operate solely upon the
beam outputs. F ...-.rays which can spatially sample the ambient field on the lattice dis-

tribution of points, the computational advantages are even more attractive since fast Fourier
transform methods can be introduced in order to form the multiple beam outputs.

Consider an array processing system as illustrated in Figure 8-6. In general, one has

yi(t) r(r"-) gi(t-r:ý) drdr (8.27)

The combiner performs a linear combination upon the beam outputs so as to direct a sum

beam in the target direction kT, with

N

Ci(w:kT) =pI Vw (8 28)

For conventional processing the beam spacing is quite close in wave numbers, so that the

individual beam outputs are simply scanned to look in the respective direction. There are two
areas whee more general combinations of beams are useful: in null placement methods,

which are closely related to the synthesis of optimum pattern for directional noises, and in

the approximate synthesis of patterns in general. As the two are closely related, we consider

them simultaneously.

209



ANP• IJ 2LS w

100

"••I 3= 20=6 •So•
NA

N=2 N= TGT
N=2 N=4 ARRAY • -6NOISE

ORIENTATION

N-4

I.0

100 200 300 400 50O 60e 700

Figure 8-5. Optimum array output power relative to An for clustered arrays in directional

plus white noise (normalized).

210



A

BEAM# I MJ MP fc 92(t-T d~d1 =Y 2(t) yMt
-~ MBEAM #2 B

N

E
•qpiN(t) d- YN(t) RIAL

BEAM # N

Figure 8-6 Preformed beam processing.

The basic issue is the selection of a set of coefficientstCi(_.kT)}.JN

g(O.k IkT) = fCi(w:kT) giw:_k) (8.29a)
i=l

or

N
G(w•:zlk-T) =E Ci(.:k-T) Gi(.'z) 18.29b)

i=l

such that

o2(tO:kT) g( 2:ýILT)2 P(w:k) -ik + N IG(w-ZlkT)12 dz (830)
1JI(1~ tk~ (2.)N S

is minimized subject to the constraint of 8.28.! This becomes

N N
o
2
(,kT) = ,Ci(I.kT)C(wkT Pn(w:k) gI(w:k)g*(w:D dk

il j=l (2w)

+NoJ Gi(w:z) GIP(c:z) dz (8.31a)

1
We are temporarily Suppressing the Ikcondi dond

211



and

N

2 Cs(w:kT) gi(•'_kT)= 1 (8.3 1b)

To optimize the choice of the coefficients {Ci(w.kT) N we differentiate incorporating

the constraint by Lagrange multipliers. By differentiating the performance with the constraint
introduced we have for the kth coefficient

N
2 Sij()C ) . ,gi(.:_T) = 0, (8.32a)

j=l

where the elements of the matrix [SNM()] are

Sij( C) =JfPn(€w:_)]g( :k) gA(w:k) + No] Gi(w-DG(w.z) dz (8 32b)

The optimal choice of {Cj*(W.kT), is then

N
Cj(-T -) [S(J jii (.:]- T) (8.33)

•:2 j(._T) (WIT)
i=l

In order to determine the Lagrangian multiplier X, we impose the constraint equation to

obtain

1=-i -ji(w:kT)9j(w:kT)=- X Tr([S(-)]pG(w kT)), (8 34a)
i=1 jfl

where
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gl(j:kT)j2 gl(L 2 1(T)•o(•:kT)= [•2 ~~(• -hg(•k) 2•kT)12
2a(W Lr _ [_)g* W:k 12 (8.34b)

gj(W:k-T)g*(W !T)

As a result, we have

N g. 40(:4-) [S(Mo)]:

i=l

Cj(W _T) Tr 1pg(W:_T) [S()]' (835)

The system performance is given by

o2(7W:kT) = (Tr I Pg(w:kT) [S(€)J •ll)'l (8.36)

Several special cases are of interest here For directional noise fields with a white
background component, the matrix [S(w)] is evaluated easily

S( =f Sm(.)gi(.W:km)Pgj(.'6m)+ NO Gi(co:z)Gj*(€w:z) dz (8.37)
m=1

This is further simplified if

gm(":jiT)= 0  m=2,M

i.e., all but one of the preformed beams have nails in the target direction. The performance
becomes

02 (Wo'kT) = IS(w)]

with a total beam pattern of the form

N

g~w:~)(g1 ' w~kT)[S(w)]Tl gj(w:k) (.8

This is shown to represent an optimum null placement technique

213



As an example of this, we consider the following Assume that we have an array of

length L and that there are noise sources of level Sn (w)12 located symmetrically at broad-
0

side, kn = ± -cos(O), plus the background noise. Beca, 4 the symmetry of the situation

we generate preformed beams of the form

Go(w:2) = L• 1j1 <L/2 (8.39a)

GI( 2) =2ý Cos L11£ R < L/2 (8 39b)
L

'for

I= lM- I

so that

go(w:k) = sinc(k.% L) (8 40a)

L'

glI(w :_) = sine k'_aL- (8 40b)

+ since~ s 2.1

We have then

So o (W)= Sn0 (w) slne 2
(v'Lx coson) + L (8.4 1a)

Soi(W) Sio(w) Sno(W) sme2vrLx cosOn) X [sinc(rLx, cOsOn-ft)

+ sinc(rLx, cOsOn + iT)] 9  (8 41b)
Sfor i= 1,M-1,
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%(W S, (w) (sinc(irLk cosOn-ir) + sinc(irL?, cosOnr)

0 n +i~r)

N0
X [sinc(irLW cOsOn + Jx) + smnc(srL) cosOn-jlr)I + o 61j,

for ij 1,M-1I (8.41c) .
and %

[S.Sn (w)M-

L 1 0 nC2(1rL?,~cson) E ~(sincI.7rLXcosOnir)* + sinc(wL,~cos~n+ivr))2]~

sinc(irL7,cos~n) sinc(irL~cOsOn)

sinc(rL)cosOn-7r) sinc(2rLkcosO,-ff)

+ sinc(arL)cosO.,+7r) + sinc(irL~cos~n-t7r) (.2

sincfL~cosOn-{M-l)r) sin1L'Xc~sOn-{M4l)Ir)

+sinc~irL7,cos~nt(M-I)?w) r sinc(wL~cos~n+(M-l)ir) /

The only beam which is nonzero at broadside is the 0th onc; consequently we are interested in
[SFI ,or

(S I-1 +((1sn-J )IN.) -ic(xL~cos9d-itr) +sinc(vL),co59n+ir))

= I + (LSn0IN0) (s=n
2 

(2xL),~coý)) + ncLes m)+ snc(2xLxcOS~+mr)2]

(8.43)

rr~
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We see that the term

LSno(WO) M-l

No 1 sinc(arL•°s~n'n) + sinc~(rL•coson+7r)
2

determines how fast we can approach the white noise performance This term, however,
represents the amount of noise energy that can be cancelled by the off-target beams One

can also generate a general expression for the beam pattern.
It is more illustrative, however, to consider an example

LN = 1 (8.44a)
cosIn = T (8.44b)

M = 2 (8.44c)

Then we have

2
sinc(rLxcOson) = - (8.45a)

and

sinc(wL~cosOn-lr) + sinc(wLcos0n+vj) = (8.45b)

I + 4 'Y 2
21

[Sw ' L L-3 7  1+-73•
S(,,, 13 (8.45c)No +1

where N

LSn(w) 27)2

1 N= (8.45d)

The beam pattern follows as
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Sg~ rk [_.T = ! (! 4 L.
g ,-kIT + T-7) smc4 k-26

9

2 L L
3-y (sinc k'a 2-+ ir) + smc k*%a-70)} (846)

We see that when 7 is small we have a conventional beam; however, as the directional noises
become strong we approach

Lie t% + )+sn (h st'8.47)
(w~k IkT) sinc\ 5 2-% r c\aL)+ m\-a lJ

222 2 2

which places a null on the direction of the noise k - coson = However, as we have seen

in our discussion of superdirective array, it introduces severe side lobes at other wave numbers

with all the attendent shortcomings of this result. The performance is given by

N2 (w:k (848)

L

When 7 is small, we are limited by the white noise level performance ofW. When 7 is large

the performance approaches

13 No
4 L'

i.e., we are willing to accept 13/4 increase from the white noise in order to cancel the

directional noise sources This represents the additional energy that enters through the largeS~side lobes in the beam.

There is another case which is worthwhile to examine. Assume that each of the beams
are distributed about a wave number ! and that the beam outputs are uncorrelated, ie.,

Sbiw) = Siw)ij
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Such a situation could appear with orthogonal aperture weightings and a frequency wave

number spectrum which varies slowly, so that we have

Sij(co) = (P(w:ki) + NO) / "A 8 ij

i.e., each beam has a power level proportional to the frequency wave number spectrum at

its nominal center of its distribution. The optimum processor is now an optimal diversity

ratio combiner with the weighting determined by the signal-to-noise ratio in that beam.
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